Use of GIS and WQI to assess groundwater quality in Naüma, Algeria

Defended on 02/09/2018

Chair
James Messo Raude Dr JKUAT Kenya
Supervisor
Chabane Sari Pr Tlemcen University
Co-supervisor
Abdessamad Derdour Dr Naama University
External Examiner
Navneet Kumar Dr ZEF, Bonn
Internal Examiner
Negadi Amina Pr Tlemcen University
DECLARATION

This thesis is a presentation of my original work.

Wherever contributions of others are involved, every effort is made to indicate this clearly, with due reference of literature, then the acknowledgement of collaborative research and discussion.

The work has done under the guidance of Professor Chabane Sari Sidi Mohammed and Dr Abdessamad Derdour, at the Pan African University of Water and Energy Science (PAUWES)

MAHAMAT MOUNTASSIR MAHAMAT ALI

Signature :

In my capacity as supervisor of the candidate’s thesis, I certify that the above statements are true to the best of my knowledge.

Pr. Chabane Sari Sidi Mohammed

Signature

Date:
DEDICATION

This dissertation is dedicated to my parents, sisters, brothers, grandmother as well as my family who have stood by me and always believed in me. You are the best.
ACKNOWLEDGEMENTS

I am very grateful to the African Union Commission and its partner for awarding me a scholarship to pursue this master’s program and making this research work possible.

I wish to thank the Director and staff of Pan African University of Water and Energy Sciences (Incl.Climate Change) for all necessary support and encouragement.

I am grateful to Prof. Chabane Sari and Dr. Abdessamad Derdour for their advice and guidance.

I am most grateful to Mr. Benkaddour Massine, Engineer at Water Resource Agency of Naâma; to Chief of Wastewater treatment plan of Naâma; to staff of Meteo Agency of Naâma and Staff of Algérie des Eaux of Naâma, who gave me all information related to my topic in this area without which this thesis would not have been possible.
TABLES OF CONTENTS

DECLARATION .. I
DEDICATION .. II
ACKNOWLEDGEMENTS .. III
TABLES OF CONTENTS ... IV
LIST OF TABLES .. VIII
LIST OF FIGURES .. IX
ABREVIATIONS AND ACRONYMES ... XIII
LIST OF SI UNITS ... XIV
Abstract ... XV
CHAPTER ONE: INTRODUCTION .. 1
 1. Introduction .. 1
 1.1. Background of the study .. 1
 1.2. Problem statement ... 2
 1.3. Objective of Study .. 3
 1.3.1. General objective .. 3
 1.3.2. Specific Objective .. 3
 1.4. Significance of the study .. 4
 1.5. Scope and Limitation of the Study ... 4
CHAPTER TWO: LITERATURE REVIEW ... 5
 2. LITERATURE REVIEW .. 5
 2.1. Ground Water Resources .. 5
 2.2. Ground Water Quality ... 5
 2.3. Groundwater quality in Algeria ... 5
 2.4. Water Quality Index .. 6
 2.5. Geographic Information System (GIS) ... 6
 2.6. Spatial Analysis .. 6
 2.7. GIS Interpolation ... 7
 2.8. Inverse Distance Weighted method (IDW) .. 7
 2.9. Source of Groundwater Pollution in Algeria ... 7
 2.10. Groundwater Vulnerability Mapping .. 7
 2.11. Statistical Methods of Modeling for ground water mapping 7
 2.12. Basic Kriging (ordinary, Universal) ... 8
 2.13. The principles of Geo statistical analysis .. 8
 2.14. Description of Water Quality Parameters ... 8
 2.14.1. pH ... 8
CHAPTER FOUR: RESULTS AND DISCUSSION

4. RESULTS AND DISCUSSION

4.1. Variation of groundwater quality parameters

4.1.1. pH

4.1.2. Electric Conductivity (EC)

4.1.3. Total Dissolved (TDS)

4.1.4. Calcium (Ca++)

4.1.5. Magnesium

4.1.6. Sodium

4.1.7. Potassium

4.1.8. Chloride

4.1.9. Sulfate

4.1.10. Nitrate

4.1.11. Bicarbonate

4.2. Spatial analysis of groundwater quality parameters

4.2.1. pH

4.2.2. Electric Conductivity (EC)

4.2.3. Total Dissolved

4.2.4. Calcium

4.2.5. Magnesium

4.2.6. Sodium

4.2.7. Potassium

4.2.8. Chloride

4.2.9. Sulfate

4.2.10. Nitrate

4.2.11. Bicarbonate

4.3. Calculation of water Quality Index (WQI)

CHAPTER FIVE: CONCLUSION AND RECOMMENDATION

5.1. CONCLUSION

5.2. RECOMMENDATIONS

References

APPENDICES

APPENDIX I: DETERMINATION OF WQI
LIST OF TABLES

Table 1: Water Quality Parameters standard ... 12
Table 2: Sample Location and some measure of aquifer ... 17
Table 3: Summarize the weightage value of the parameter and the concentration given by WHO ... 23
Table 4: Water Quality Index Designations .. 23
Table 5: Statistical summary of groundwater quality parameter 34
Table 6: Resume of the statistics of the weights for this year 2018 47
Table 7: WQI classification for the Groundwater sample ... 48
LIST OF FIGURES

Figure 1 Location of Study area ... 13
Figure 2 Maximum and Minimum Temperature of Naarna from 1980-2017 14
Figure 3: Average Monthly precipitation of Naarna from 1980-2017 15
Figure 4: flow chart ... 25
Figure 5: Mean concentration of pH ... 26
Figure 6: Mean Concentration of EC .. 27
Figure 7: Mean Concentration of TDS ... 28
Figure 8: Mean concentration of Calcium .. 28
Figure 9: Mean Concentration of Magnesium ... 29
Figure 10: Mean Concentration of Sodium .. 30
Figure 11: Mean Concentration of Potassium ... 30
Figure 12: Mean concentration of chloride ... 31
Figure 13: Mean concentration of sulfate .. 32
Figure 14: Mean concentration of nitrate ... 33
Figure 15: Mean concentration of bicarbonate ... 33
Figure 16: Spatial distribution map of pH in Naarna ... 36
Figure 17: Spatial distribution map of EC (mg/l) in Naarna 37
Figure 18: Spatial distribution map of TDS (mg/l) in Naarna 38
Figure 19: Spatial distribution map of Calcium (mg/l) in Naarna 39
Figure 20: Spatial distribution map of Magnesium (mg/l) in Naarna 40
Figure 21: Spatial distribution map of Sodium (mg/l) in Naarna 41
Figure 22: Spatial distribution map of Potassium (mg/l) in Naarna 42
Figure 23: Spatial distribution map of Chloride (mg/l) in Naarna 43
Figure 24: Spatial distribution map of Sulfate (mg/l) in Naarna 44
Figure 25: Spatial distribution map of Nitrate (mg/l) in Naarna 45
Figure 26: Spatial distribution map of bicarbonate (mg/l) in Naarna 46
Figure 27: The value of WQI for groundwater sample ... 49
ABREVIATIONS AND ACRONYMES

ADE Algérienne des Eaux

DPSB Direction de la Programmation et de Suivi Budgétaire

CCMEWQICanadian Council of Ministers of the Environment Water Quality Index

ECElectrical Conductivity

ESRIEnvironmental Services Research Institute

GPSGlobal Position System

GISGeographical Information System

IDW Inverse Distance Weight

NSFWQINational Sanitation Foundation Water Quality Index

OWQIOregon Water Quality Index

TDSTotal Dissolved Solids

WHOWorld Health Organization

WQIWater Quality Index

WAWQI Weight Arithmetic Water Quality Index
LIST OF SI UNITS

mg/L Milligrams per liter
Cfu/mL Colony Forming Unit per milliliter
NTU Nephelometric Turbidity Unit
μS/cm............................... Micro Siemens per centimeter
Abstract

Groundwater is an important water resource in the world. The region of Naâma is the chief town of the Naâma wilaya which is situated in southeast of Tlemcen, Algeria. It is highly dependent on groundwater resources. In this area the groundwater is the only available source that is used for domestic household, agriculture and industrial purposes. Assessment of groundwater quality is highly important in order to safely and sustainably exploit the water resource. The aim of this study was to assess the groundwater quality by using GIS and Water Quality Index in Naâma, Algeria. Ten groundwater samples were collected from boreholes in this year 2018. This was carried out by sampling water using Duran bottles and transporting the water samples into the laboratory for analysis. The physico-chemical parameters (such as pH, Electrical Conductivity (EC), Total Dissolved Solids (TDS), Bicarbonate, Ammonium, Sulfate, Nitrate, Calcium, Magnesium, Sodium, and Potassium) were selected for the spatial analysis with the help of the Geographical Information System (GIS). Inverse Distance Weighted interpolation technique was also used for creating maps for Water quality index and physico-chemical parameters that were analyzed. The result of the analysis was compared with the guidelines of WHO and Algeria Potable Water Standard in order to set up the status of groundwater quality in this area. To compile the Water Quality Index (WQI), 11 parameters were chosen. The result of WQI showed that 40% of the collected groundwater samples were of excellent quality and 60% were found to be in good quality. The spatial distribution maps produced for several physico-chemical parameters using ArcGIS (10.3) software could be helpful for designing a water program. WQI and GIS can be adopted by water engineers, utilities and decision makers in order to assess and monitor regularly the groundwater quality in a given area.

Key Words: Geographical Information System, Groundwater Resources, Physico-Chemical Parameter; Water Quality Index,
Résumé

Les eaux souterraines sont une ressource en eau importante dans le monde. La région de Naâma est le chef-lieu de la wilaya de Naâma, située au sud-est de Tlemcen, en Algérie. Elle dépend fortement des ressources en eau souterraine. Dans cette zone, l'eau souterraine est la seule source utilisée à des fins ménagères, agricoles et industrielles. Cependant l'évaluation de la qualité de l'eau souterraine est très importante afin de sécuriser et maintenir l'exploitation de l'eau dans cette région. Le but de cette étude était d'évaluer la qualité des eaux souterraines en utilisant le Système d'Information Géographique (SIG) et l'Indice de Qualité de l'Eau (IQE) à Naâma. Pour ce faire, un ensemble de dix échantillons d'eaux ont été prélevés au niveau des différents forages (2018). Ces échantillons ont été conservés dans des bouteilles en plastique et transportées au laboratoire pour les analyses. Les paramètres physico-chimiques tels que (pH, conductivité électrique (CE), solides dissous totaux (TDS), bicarbonate, ammonium, sulfate, nitrate, calcium, magnésium, sodium et potassium ont été utilisés pour l'analyse spatiale avec l'aide du système d'information géographique (SIG), de plus une carte de l'indice de qualité de l'eau a été également réalisée. Les résultats de chaque paramètre ont été comparés avec les directives de l'OMS et celles de l'Algérie afin d'établir le statut de la qualité des eaux souterraines de ladite localité. Les résultats de l'IQE ont montré que 40% de l'échantillon d'eau souterraine sont d'une qualité excellente et 60% de bonne qualité. Les cartes de distribution spatiale produites pour plusieurs paramètres physico-chimiques à l'aide du logiciel ArcGIS (10.3) pourront être utiles pour la conception d'un programme d'eau. Les ingénieurs ainsi que les décideurs du domaine de l'eau peuvent ainsi utiliser l'IQE et les SIG afin d'évaluer et contrôler régulièrement la qualité des eaux souterraines dans la région de Naâma.

Mots Clés : Eaux Souterraines, Indices de la Qualité d’Eau, Paramètres Physico Chimiques, Système d'Information Géographique,
ملخص

تعتبر المياه الجوفية مورداً مائياً مهماً في المنطقة القاحلة وشبه القاحلة، وخصوصاً في منطقة نعمة بالجزائر، لأنه في هذه المنطقة معظم السكان يستخدمون المياه الجوفية للأغراض المنزلية والزراعية والصناعية، إن تقييم جودة المياه الجوفية مهم للغاية من أجل تأمين واستدامتها لأغراض الاستغلال. كان الهدف من هذه الدراسة هو تقييم جودة المياه الجوفية باستخدام مؤشر نظام المعلومات الجغرافية وفهرس جودة المياه. تم جمع عشرات عينات من الآبار في تلك المنطقة لهذا العام 2018، وقد تم ذلك عن طريق أخذ عينات المياه باستخدام قارورة. تم استخدام قارورة للاختبار والتحليل. تم استخدام نتائج اختبارات جودة المياه كمؤشر لمدى جودة المياه الجوفية في تلك المنطقة. تم استخدام تقنية الانتشار والتباطؤ العكسي لرسم خرائط توزيع المياه الجوفية في هذا المجال. يتم استخدام مؤشر جودة المياه (WQI) الذي تم اختياره. وجدت أن 70% من عينات المياه الجوفية تشير إلى جودة ممتازة. يمكن أن تكون خرائط النماذج المكاني المبتكرة للمركبات الكيميائية فعالة. هذه المفيدة في تصميم برنامج المياه، وذلك للمهندسين وصناعيي القرار من أجل تقييم وراقبة جودة المياه الجوفية. الكلمات المفتاحية: نظم المعلومات الجغرافية، فهرس جودة المياه، المركبات الكيميائية، المركبات الفيزائية، المياه الجوفية.
CHAPTER ONE: INTRODUCTION

1. Introduction
1.1. Background of the study

Groundwater is an important water resource in the world. The region of Naâma is the chief town of the Naâma wilayas which situated in southeast of Tlemcen, Algeria. It is highly dependent on groundwater resources for its welfare. In this area the groundwater is the only available source that is used for domestic household, agriculture and industrial purposes. Groundwater is the main source of drinking water for a majority of the population in Algeria, especially in rural areas (Zafane.D et al., 2016). The amount of water extracted from groundwater is about 70% of water used for drinking and irrigation services in Algeria (Bouderbala, 2017). Dependence on groundwater has increased due to changing lifestyle, urbanization and population growth. These factors impact negatively on the quantity and quality of groundwater resources (Kumar Sharma I.P et al., 2016). There are some factors that influence the characteristics of groundwater such as quality of water recharge, atmospheric precipitation and water flows on the subsurface (Hema Latha. T.et al., 2012)

However, in the arid and semi-arid region, the quality of groundwater is grossly affected by agricultural activities due to the use of chemical fertilizers (Salwa Saidi, Salem Bouri, Hamed Ben Dhia, & Brice Anselme, 2009). The degradation of groundwater quality is generally caused by natural processes and human activities (Magesh N. S. et al., 2012). Treatment of polluted groundwater is a big challenge. Before water is used in different sectors like domestic, agriculture and industry, it is mandatory to evaluate its quality.

Water Quality Index (WQI) is an important parameter which can be used for the vulnerability assessment of groundwater since it hints on the status of groundwater in an area. According to (Olayiwola Oni., 2016), WQI is a powerful tool for assessing the suitability of groundwater and surface water.

The determination of water availability, flood prevention, and water resource management are elements that can be analyzed and modeled by Geographic Information System. It is also a very effective software for the realization of maps at the local or regional level (K.Ambiga, 2016).

The researchers (Ishaku J.M et al., 2012; Hema Latha.T et al., 2012; K.Ambiga., 2016) have computed WQI and mapped their results using GIS with different objectives depending on their field of study in order to evaluate and assess the suitability of groundwater quality.
The combination of GIS and WQI provides a means of assessment of groundwater quality (Mouna Ketata.R et al., 2011). The aim of this thesis was to use GIS and WQI to assess groundwater quality in Naâma, Algeria.

1.2. Problem statement

Clean water is important for human health. It has been established in Agenda 2030 as the right of every human being, but still millions of people do not have access to clean water especially in developing countries, most of which are in Africa.

Rapid urbanization and increase of human population have a negative impact on the environment such as groundwater, water supply and sanitation. The major cause of environmental problem at this time is the pollution of groundwater. Human health is adversely affected due to the contamination of surface and groundwater. However, groundwater in the area is polluted due to the reject of wastewater treatment and agricultural pollution which is coming from irrigation activities and runoff containing pollutants. Besides anthropogenic pollution, there is also natural pollution which is characterized by the presence of two saline mountains after rainy period which is percolated into the groundwater.

Further lack of good governance for groundwater and insufficient strategic management influence the groundwater resources in this region. The problem of groundwater quality has emanated from ignorance of local communities through lack of management and strategic planning for groundwater.

In wilaya of Naâma and its surrounding areas, groundwater resources have been investigated in terms of potential, hydrodynamic, hydrogeology, flows modeling, water quality assessment and vulnerability by different researchers. For example [Characterization, classification, bacteriological, and evaluation of groundwater from 24 wells in six departments of Algeria (Mostaganem, Mecheria, Naâma, Tiaret, Bechar, and Adrar)] study by (Fouad Bahri, 2012), and [Use of geographical information system in the hydrodynamic and hydro-chemical characterization of the aquifer of Ain Sefra has been conducted by (Rahmani.A., 2010). However, the scopes of these studies have been limited. Hence, Fouad studied only the chemical and bacteriological parameters without using GIS. Rahamani is focused only on the aquifer of Ain Sefra which does not encompass the area of Naâma.

In order to safely sustain the quality of groundwater in the area of Naâma, it is obvious that the quality of ground water needs to be assessed and evaluated, since groundwater in the Naâma is used for water supply and irrigation.
1.3. Objective of Study

1.3.1. General objective

Assessing the groundwater quality for drinking water using Geographical Information System and Water Quality Index

1.3.2. Specific Objective

The following specific objectives were addressed by this study:

- To analyze the physico-chemical parameters
- To calculate Water Quality Index
- To create a spatial distribution of physico-chemical parameters and WQI by using GIS
1.4. **Significance of the study**

Generally, a great part of Africa relies on groundwater for domestic and irrigation purposes. In Naâma, it is the only source for water supply and irrigation. The result of the realization of vulnerability maps is in a very clear simple format which can be understood by the public sector. The spatial distribution of physicochemical parameters in the groundwater of this region is showed with different legends. This helps for easy understanding by the policymakers in taking decisions easily. In general, the maps are practical tools which can help as a road map towards the sustainable use and management of the groundwater quality in the area.

1.5. **Scope and Limitation of the Study**

In order to describe the overall water quality condition, there is difficulty due to the spatial distribution of several pollutants and the wide range of indicators that require to be determined. So this study presented several parameters such as pH, Electrical Conductivity, Total Dissolved Solids, Calcium, Magnesium, Sodium, Potassium, Chloride, Nitrate, Bicarbonate) map distribution.

Some of the challenges encountered were:

- Lack of water quality data for Naâma boreholes
- Time limit and climate condition such that the result may not fully capture seasonal changes in groundwater quality in the Naâma
CHAPTER TWO: LITERATURE REVIEW

2. LITERATURE REVIEW

2.1. Ground Water Resources

Groundwater is the largest fresh water resource on earth and its quality is influenced by natural and anthropogenic sources (Gopal Krishan, 2016). Only two to three percent of total water on earth is fresh water, and groundwater constitutes a significant portion of the fresh water resources (K.Ambiga, R. Anna Durai, 2013). The major part of the population in the world uses groundwater for drinking and agriculture (K.Ambiga., 2016). The demand for water has been increasing considerably due to increasing population and the proliferation of industries (K. Sundara Kumar, 2010).

2.2. Ground Water Quality

Assessment of groundwater quality is helpful for improvement of the characteristic of water. Groundwater contamination is usually caused by the infiltration of pollutants into the subsoil (Kumar, I., et al.2015). Many authors have shown that there are some factors which may influence the contamination of groundwater such as anthropogenic activities, atmospheric precipitation, water discharge, geochemistry of the soil as well as meteorological condition. (Atiemo M. Sampson, 2012; Sadat-Noori S. M et al.). Hence when the groundwater is polluted, it can cause huge economic gaps in an area.

In order to establish a good plan for water resources management, it is important to carry out an assessment of groundwater quality. This will have an impact on socio-economic development and also help in the creation of a database (Ishaku J.M et al., 2012).

2.3. Groundwater quality in Algeria

In some areas of Algeria, the groundwater quality was very hard, the value of conductivity and salinity have been influenced due to the lithology and mineralogy of aquifer (Chabour et al., 2018). In arid and semi-arid areas, the groundwater was impacted due to evaporation, high rainfall and over pumping.

Therefore, in areas which are close to the sea like Algiers and Annaba, it was observed that there is salt pollution in the groundwater due to the sea water intrusion. In Southwest of Algeria, the groundwater quality is influenced by the wastewater discharge (A. Hadidi, 2018).
2.4. Water Quality Index

Water Quality Index is a computation of each water quality parameter which has an influence on the overall quality of water (K.Ambiga, R. Anna Durai, 2013). It is a great tool which produces effective assessment of water quality. It compiles several parameters into a unique value. Therefore, WQI gives a clear indication of water quality in order to understand and make decisions (Kumar SharmaI.P et al., 2016). The researchers (K. Sundara Kumar et al., 2015) carried out a case study on assessment of ground water quality using water quality index which showed the suitability of the method in groundwater classification. It gives the assessment of water quality and classifies them into categories such as excellent, good and bad for ease of understanding (Akoteyon, 2013).

In addition, WQI method is widely used for groundwater quality assessment around the world due to the capability of fully expressing the information of water quality and it is the only effective tool used to evaluate and manage water quality parameters (Sadat-Noori S. M et al., 2013).

2.5. Geographic Information System (GIS)

Geographic Information System (GIS) is a tool for the management of spatial and geographical data. It is capable of analyzing a large volume of data. It is a great environment for data processing (Machiwal.D et al., 2010). In general it is used for water resources management such as water availability, flood and drought at the local or regional level (K.Ambiga, 2016).

GIS is also used to assess the vulnerability and suitability of groundwater based on water quality parameters (Kumar SharmaI.P et al., 2016). Many researchers have used GIS in order to assess the suitability and vulnerability of groundwater quality such as (Kiplangat Cherono Nelly, 2016; Rabia Shabbir·, 2015; S. Packialakshmi1, 2015). Therefore GIS provides more information about the assessment of groundwater quality and it helps policy makers to make decisions (Mouna Ketata.R et al., 2011).

2.6. Spatial Analysis

Spatial analysis is an extension of GIS that enables the interpolation of groundwater quality parameters of unknown locations from known values, to create a continuous surface which then help to understand the distribution of physical and chemical parameters of the study area (Rabia Shabbir·, 2015).

The concept of identifying water quality problems and relating them to land use in order to interpret the cause of environmental degradation from the spatial distribution has been implemented.
by (Bairu.A et al., 2013). (Gopal Krishan, 2016) used spatial distribution method to assess water quality parameters and mapped out areas where the groundwater quality was not fit for human consumption.

2.7. GIS Interpolation

GIS has two methods for interpolation which are geostatistical and deterministic. The Inverse Distance Method (IDW) and Spline are deterministic. Kriging is a geostatistical method (Hema Latha. T.et al., 2012). (Kiplangat Cherono Nelly, 2016) which has been used for interpolation of groundwater quality parameters.

2.8. Inverse Distance Weighted method (IDW)

Inverse distance weighted method is an interpolation technique used to characterize the distribution of a water sample in an area. Mostly this technique has been applied in the assessment of groundwater quality. According to (Magesh N. S. et al., 2012), IDW is an algorithm used to interpolate spatial data or to estimate the values within a location.

The assessment of groundwater quality in Adamawa, Nigeria by (Ishaku J.M et al., 2012) which utilised the IDW technique in order to delineate potential areas with their respective water quality and (Bairu.A et al., 2013) who used IDW for the creation of water quality index map.

2.9. Source of Groundwater Pollution in Algeria

Aquifer pollution has occurred in some areas, for example saline intrusion along the coast relating to over-abstraction, and nitrate pollution from agriculture, despite legislation to limit nitrate contamination pollution from agricultural activities.

2.10. Groundwater Vulnerability Mapping

The degradation and vulnerability of groundwater quality is generally caused by natural processes and human activities (Magesh N. S. et al., 2012). There are several researchers who applied many methods in order to determine the vulnerability of groundwater. Among these methods, some worth mentioning are: Overlay and index methods (Example, DRASTIC) Process-based simulation models (Example, Numerical model) Statistical methods (Example, Kriging, Logistic Regression).

2.11. Statistical Methods of Modeling for ground water mapping
There are some parameters which are estimated by using the theory of probability in the case of statistical models. The method of prediction generally follows the estimate of the prediction error. The input of Statistical methods such as drawback is a key element for the statistical assumptions.

The statistical models constitute four groups which are (Hengl, 2007).

- Kriging (plain geostatistics).
- Environmental correlation (e.g. regression-based).
- Bayesian-based models (e.g. Bayesian Maximum Entropy).
- Mixed models (regression-kriging).

2.12. Basic Kriging (ordinary, Universal)

Kriging method is part of statistical models which include the statistical relationship among the measured points. It is the best unbiased predictor and if the data is normally distributed, kriging is the best predictor among all unbiased predictors (gisgeography, 2018).

2.13. The principles of Geo statistical analysis

The geo-statistical analysis gathers the data from different point of an area and establish a continuous surface. It has two groups of interpolation techniques which are deterministic and geostatistical. Deterministic techniques use mathematical functions for interpolation. There are statistical and mathematical methods which are part of Geostatistics. It can serve to create surfaces and assess the uncertainty of the predictions (ESRI, 2003).

2.14. Description of Water Quality Parameters

2.14.1. pH

pH determines the activity of hydrogen and hydroxyl ion in solution. It gives a clear understanding on the behavior of water such as acid or alkaline with the scale from 0 to 14. The range of pH is between 7.0 – 8.5 in normal drinking water. pH measurements below 7 indicate that the water is acidic containing high concentration of proton (H+) than concentration of (OH-). Measurement above 7 indicates that the water is alkaline (basic) thus containing high concentration of (OH-) than proton (H+). It is one of the most important water quality parameters. The parameter plays an important role in the suitability of water for different purposes (Kiplangat Cherono Nelly, 2016). Groundwater sample with low pH is given to reject of acid water which the origin of discharge come from agricultural and household activities.

2.14.2. Turbidity
Turbidity is a physical parameter which allows to determine the transparency of a liquid. It has an expression of the quantity of light produced from the material into the water which the light is flashed through the water sample (U.S. Geological Survey, 2016).

Turbidity can affect negatively the efficiency of disinfection. It is measured in order to know the processes and nature of treatment required.

2.14.3. Total Hardness

The principal cause of hardness in water is generally due to the presence of some chemical elements such as carbonates, bicarbonate of calcium, magnesium, sulphates, chloride and nitrates (Hema Latha.T et al., 2012). The tolerance limit for total hardness in drinking water is 300 mg/l of calcium carbonate (Kiplangat Cherono Nelly, 2016).

2.14.4. Total Alkalinity

Alkalinity can be defined as the buffering of a water body. It is a measure of the capacity of the water body to balance acids and bases (U.S. Geological Survey, 2016).

2.14.5. Nitrate

Nitrate is derived from aerobic stabilization into organic nitrogen and nitrogenous substances. Nitrate is dangerous and toxic for humans when it is transformed into nitrite. The high rate of nitrates in water causes an infant disease called blue baby syndrome (Kiplangat Cherono Nelly, 2016).

2.14.6. Chloride

The origin of Chloride in drinking water is from natural sources, wastewater and Industry. It does not have a threshold value in the health guideline. However, excess of chloride concentrations above 250 mg/litre can add taste to water (U.S. Geological Survey, 2016).

2.14.7. Fluoride

Fluoride is a chemical element derived from fluorine. It is used in drinking water to prevent some diseases such as tooth decay. High quantity of fluoride in water is unsafe as it can weaken bones, and nervous problems (Natural Medicines Comprehensive Database, 2009).

2.14.8. Sulfate

The sulfate has three different origins which are: external (rain fall and anthropogenic), internal (gypsum dissolution, oxidation of mineral rock sulfured), and biological (degradation of
organic matter). The presence of sulfate in drinking water can effect a bad taste, and with high amount can cause a laxative effect for human consumers (Sadat-Noori S. M et al., 2013).

2.14.9. Chromium

The nature of chromium is a metallic element generally found in the environment and inside of human being. It is used in metal industries, paints, wood and corrosion. The guidelines of World Health Organization (WHO) give the value of total chromium in drinking water to be about 0.05 mg/l. However, chromium has effect on human health which can cause cancer. (American Water Works Association, 2013).

2.14.10. Phosphate

Phosphate is a chemical component which has three forms in the environment such as orthophosphate, metaphosphate, and phosphate which is organically bound. The orthophosphate forms are derived by natural cycle, however there are some external sources of orthophosphate which come from wastewater and agricultural practice.

Phosphate has a negative impact in the environment which can produce a rapid growth of algae population that may cause the death of vegetation and aquatic life. (Brian Oram, 2014)

2.14.11. Iron

Iron is an important chemical element in the body composition and is essential for human health. The presence of iron in water is from the weathering of rocks and industrial effluents discharge (Gopal Krishan, 2016).

2.14.12. Sodium, Potassium, Calcium

They have an origin form natural and anthropogenic. It may be internal when water flows inside an aquifer. These elements can result from different formations which are:

- Evaporation and evapotranspiration from aquifer less deep
- Biological process is kind of producing the potassium K+ which enable to tree to absorb it
- They have exchange with clay (Na, K, Ca, Mg) and organic matter

2.14.13. Magnesium

The nature of magnesium comes from aquifer. The kinetic dissolution is very slow if it takes calcite rock but it has rapid dissolution with evaporate rock. The acquisition of magnesium rock is correlated with calcium (Ca) and Sulfate (SO₄²⁻). It is the main cause of water hardness. Magnesium
is washed from rocks and subsequently ends up in groundwater. However, magnesium contributes to water hardness, according to WHO (2004) the permissible limit of magnesium in drinking water is to be between 100 and 150 mg/L.

Manganese is a key important element for human beings and other living organisms. It can effect negatively on the health due to improper consumption or its spread into the environment (Rabeiy, 2017)

2.14.15. Electric Conductivity

Electrical conductivity is described as the capacity of electrical current to pass through water (Kiplangat Cherono Nelly, 2016). It is a measure of water capacity to convey electric current. Electrical conductivity depends on temperature, the concentration of the ions presents in the solution and high concentration of hardness. Therefore, wastewater and agricultural activities may contribute to increase in value of conductivity because of the presence of some pollutants in water like nitrates and phosphates. Sewage and farm runoff can raise conductivity due to the presence of nitrates and phosphates. According to the guideline of WHO (2004) the maximum limit of EC in drinking water in 1500 μS/cm.

2.14.16. TDS

The concentration of TDS in water depends on different geological layers in a region due to its particular aspect in the solubility of minerals. Total Dissolved Solids (TDS) have a major part of inorganic salts such as (chlorides, bicarbonates, sulfates, calcium and magnesium…) and little quantity of organic matter which are soluble in water. The total dissolved solids concentration is the sum of the cations and anions in the water. The presence of a high amount of TDS in groundwater may be explained by the discharge of some pollutant such as sewage, industrial waste and urban runoff.

2.14.17. Bicarbonate

The cause of Alkalinity is due to the presence of carbonates in the water resource, its concentration is expressed in mg/l and the limit for drinking water is 100 mg/l. A high concentration in water is harmful for irrigation and may cause soil damage and decrease in crop yield. Water having bicarbonate less than 100 mg/l is desirable for household consumption (Hema Latha. T.et al., 2012).
2.15. **Guidelines for water quality parameters**

Potable water is used in the household for different purposes such as drinking, cooking and personal hygiene. It is encouraged to make efforts in order to produce drinking water that is as clean as practicable (WHO, 2011). The guidelines of drinking water may vary among countries and regions. There is not one method that is universally applicable. It is important in the development and implementation of standards that the legislation relating to water, and local authority is taken into account and that the capacity of regulators in the country is assessed. If one method is applicable in one country, it will not necessarily apply to another country. It is essential that each country reviews its needs and capacities in developing a regulatory framework (WHO, 2011). Based on the water quality standards stipulated by the WHO, ranks were assigned for each parameter depending on the respective tested values, as given in the Table 1

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Unit</th>
<th>Standards WHO & Algerian Standard</th>
</tr>
</thead>
<tbody>
<tr>
<td>pH</td>
<td></td>
<td>6.5-8</td>
</tr>
<tr>
<td>TDS</td>
<td>mg/l</td>
<td>600</td>
</tr>
<tr>
<td>Phosphate</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sodium</td>
<td>mg/l</td>
<td>200</td>
</tr>
<tr>
<td>Sulfate</td>
<td>mg/l</td>
<td>250</td>
</tr>
<tr>
<td>Calcium</td>
<td>mg/l</td>
<td>75</td>
</tr>
<tr>
<td>Potassium</td>
<td>mg/l</td>
<td>12</td>
</tr>
<tr>
<td>Magnesium</td>
<td>mg/l</td>
<td>50</td>
</tr>
<tr>
<td>Nitrate</td>
<td>mg/l</td>
<td>3</td>
</tr>
<tr>
<td>Chloride</td>
<td>mg/l</td>
<td>250</td>
</tr>
<tr>
<td>Electric Conductivity</td>
<td>μs/cm</td>
<td>1500</td>
</tr>
<tr>
<td>Bicarbonate</td>
<td>mg/l</td>
<td>100</td>
</tr>
</tbody>
</table>
CHAPTER THREE: MATERIALS AND METHODS

3. Materials and Methods

3.1. Description of the study area

3.1.1. Location

Naâma is the capital city of the Wilaya of Naâma and it is located inside of synclinal of Naâma which covers an area of about 2 525,93 km². The geographical situation is between 33° 16’18.3” North and 0°18’54.2” West.

![Figure 1 Location of Study area](image-url)
Population

According to Department of Programming and Monitoring Budgetary of Naâma (direction de la programmation et de suivi bugetaire, 2017), it was estimated that the total population of wilaya of Naâma is around 25.2593 inhabitants, with a density of 10.35 (Hab / Km²). The majority of the population depends on groundwater resources for drinking and agriculture.

3.1.2. Climate

The climate of Naâma is arid and semi-arid with averages of -10 °C in winter and more than 45 °C in summer. Generally, the climatic year of the commune is divided into two main seasons: winter and relatively wet season starts from November to April, hot and dry season from May to October. The vegetation is negatively impacted due to high temperatures during the dry season.

Naâma has an annual average temperature of around 24.9°C. The region faces desertification which affects the groundwater resource. Its annual average rainfall is about 2076 mm. The maximum and minimum for temperature and precipitation from (1980-2017) are shown in the following two figures.

Figure 2 Maximum and Minimum Temperature of Naâma from 1980-2017
Figure 3: Average Monthly precipitation of Naama from 1980-2017

3.2. Geology

The Naama syncline is characterized by predominantly sandstone-dominated continental formations by Tertiary, Cretaceous and Jurassic terrains.

There is a formation of the tertiary continent consisting of sandstone levels with highly permeable and known in the region by Albine Gréseux.

- Jurassic Medium

 The bajo-bathonian: constituted by dolomitic limestones.

 The callovo-oxfordian: is characterized by alternating clay-sandstone

- The Upper Jurassic

 Characterized by a series of sandstones at the top then another sizzling series between cut by a thick clay series
3.3. Geography

The geography of Naâma is divided into three regions which include a flat northern steppe zone representing 74% of the total area of the wilayas where pastoral activity predominates (the herd is estimated at over 1200 000 head). A mountainous area occupying 12% of the territory of the wilayas, part of the Saharan Atlas where there is oasis agriculture. In South Pre-Saharan zone that extends over the remaining 14% of the wilaya (direction de la programmation et de suivi bugetaire, 2017).

3.4. Water Resources and Supply

Drinking water supply is important for improving the living condition of the urban and peri-urban population. The capital city of Naâma provides water for its residents from underground which has a total storage capacity of around 2 450 m3 (DPSB, 2017).

The potential water resources in and around Naâma are generally classified into two major groups:

- Surface water resources (Oued, Spring, Hillside retention)
- Ground water resources (Wells, Boreholes), currently many of water supply are using boreholes for drinking water and wells in some areas for irrigation purposes. The subsoil of the wilayas contains great water potential, which is a little exploited.

The different groundwater Storage are located in the wilayas of Naâma:

- Chott EL-Gherbi
- Chott Echergui
- Syncline of Naama
- The acquiferes of the valley of Ain Sefra and Tiout
3.5. **Methodology**

3.5.1. **Sources of Data**

The water samples were collected from 10 boreholes which are located in the area zone of Naâma. The water samples are analyzed in the laboratory of Naâma.

<table>
<thead>
<tr>
<th>ID</th>
<th>Sample location</th>
<th>X(m)</th>
<th>Y(m)</th>
<th>Z(m)</th>
<th>condition</th>
<th>use</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Naâma</td>
<td>217400</td>
<td>297150</td>
<td>1179</td>
<td>Exploited</td>
<td>AEP</td>
</tr>
<tr>
<td>2</td>
<td>Naâma</td>
<td>220800</td>
<td>300100</td>
<td>1170</td>
<td>Exploited</td>
<td>AEP</td>
</tr>
<tr>
<td>3</td>
<td>Horchaia</td>
<td>223900</td>
<td>307300</td>
<td>1179</td>
<td>Exploited</td>
<td>AEP</td>
</tr>
<tr>
<td>4</td>
<td>Naâma</td>
<td>206500</td>
<td>289000</td>
<td>1200</td>
<td>Non exploited</td>
<td>IRR</td>
</tr>
<tr>
<td>5</td>
<td>Naâma</td>
<td>215600</td>
<td>299900</td>
<td>1166</td>
<td>Exploited</td>
<td>Autre</td>
</tr>
<tr>
<td>6</td>
<td>Naâma</td>
<td>218500</td>
<td>303100</td>
<td>1164</td>
<td>Non exploited</td>
<td>Autre</td>
</tr>
<tr>
<td>7</td>
<td>Touadjeur</td>
<td>229200</td>
<td>316500</td>
<td>1140</td>
<td>Exploited</td>
<td>AEP</td>
</tr>
<tr>
<td>8</td>
<td>Naâma</td>
<td>215500</td>
<td>301000</td>
<td>1171</td>
<td>Non exploited</td>
<td>Autre</td>
</tr>
<tr>
<td>9</td>
<td>Touadjeur</td>
<td>232100</td>
<td>315000</td>
<td>1170</td>
<td>Non exploited</td>
<td>Autre</td>
</tr>
<tr>
<td>10</td>
<td>Naâma</td>
<td>219449.81</td>
<td>300431.55</td>
<td>1171</td>
<td></td>
<td>AEP</td>
</tr>
</tbody>
</table>

3.6. **Technical analysis of groundwater quality parameter**

The physical, chemical and biological parameters are part of water quality. Generally, the unit of these elements is milligram per liter but EC in micro-siemens per centimeter and pH has no units.

3.6.1. **pH**

The device of the pH meter was first calibrated with standard solutions against a pH buffer calibrated against a pH of 7 and 9 at a temperature of 25°C to adjust to the response of the glass electrode.

Calibrate the device with standard solutions (pH 4 - 7 or 10) and wash the electrodes again with distilled water and dry them. Introduce the electrodes into the sample and stir gently and stop, allowing for 1-2 minutes for a stable reading to be examined and take a reading.
3.6.2. Electric Conductivity (EC)

It was analyzed with the help of a portable conductivity meter. The tool of conductivity was cleaned out with three portions of KCl solution at 25°C. The conductivity cells and beaker were rinsed with a dose of the sample. The beaker was filled completely with the sample. The conductivity meter was put into the beaker filled with the sample and the value read and recorded.

3.6.3. Total Dissolved (TDS)

Its concentration was determined by using the gravimetric method. The magnetic stirrer was used for stirring the sample. A volume of the sample was measured and poured into a 100 ml cylinder by means of a funnel on a fiberglass filter with an applied vacuum. The fiberglass filter allowed the sample to be filtered under vacuum pressure for three minutes to ensure that water was removed.

The total filtration of the sample was poured into an evaporation dish and evaporated in an oven at a temperature of 180 to 200 °C for one hour, then cooled in a desiccator and finally weighed. It was a cycle of drying and weighing in order to get a constant value of TDS. Finally, the TDS value was calculated using the following formula below.

\[
TDS = \frac{(A-B) \times 1000}{\text{volume of sample}} \text{ml}
\]

where:
A = weight of dried residue + dish (mg)
B = weight of dish (mg)

3.6.4. Sodium

The photometric flame method was used to determine the concentration of sodium (Na +). A standard solution of NaCl of 20 mg/L was made to normalize the photometer. The photometer filter selector was used to select sodium after operation of the photometer and the standard solution which is 20 mg/L. To obtain the standard concentration value of 20 mg/L the machine was calibrated. Sample readings were taken. After some sample readings, the machine was re-calibrated to ensure readings in the range of 20 mg/L. The calibration curves were drawn for sodium and found the concentration results in mg/L.
3.6.5. **Potassium**

The flame photometric method was used to determine the concentration of potassium (K +). A KCl standard solution of 20 mg / l was made to standardize the flame photometer. The photometer filter selector was used to select Potassium after starting the photometer and the standard setting of 20 mg / L. In order to obtain the standard concentration value of 20 mg / l the machine was calibrated. Sample readings were taken. After some sample readings, the machine was re-calibrated to ensure readings in the range of 20 mg / L. The calibration curves were drawn for potassium and found the concentration results in mg / L.

3.6.6. **Chloride**

The determination of chloride by the method of Mohr.

The objective it was to determine the concentration of chloride with Mohr Method. The following equation of chloride concentration was used:

\[
\text{CL}^- + \text{AgCl} \rightarrow \text{white precipitate with whole the chloride will disappear}
\]

\[
2\text{Ag}^+ + \text{CrO}_4^{2-} (\text{yellow}) \rightarrow \text{Ag}_2\text{CrO}_4 \rightarrow \text{precipitate red-rosy}
\]

Some drops of silver nitrate solution were added and the solution was reacted with the chromate ions producing silver chromate, which appeared as a precipitate of pink red chloride.

Material:

- Burette 25 ml
- Stand and burettes Stirrups
- Two 250 ml Erlenmeyer flasks
- Automatic pipette
- 50 ml beaker
- pH-meter
- Sample of Water

Reagents

Solution of AgNO3,0.1 evaluated and 5% solution K2CrO4, Na2CO3, CH3COOH and distilled water.

Methodology for chloride
Measure 10 ml water sample with a pipette into a 250ml Erlenmeyer flask, then add 50 ml of distilled water to dilute and better observe the turn, at least three drops of the indicator then add potassium chromate. Then verify the solution with the aid of pH meter. Then it was proceeding from 0.1N to level the burette to 0 with a silver nitrate solution and start to evaluate 0.1N by silver nitrate while the balloon flutters continuously with an appearance of red rosaceous precipitate that it showed the final evaluation.

3.6.7. Sulfate

The barium made it possible to convert the sulphate ion into an acid medium with the suspension of barium chloride under a good condition. The spectrophotometer made it possible to measure the suspension of barium sulphate (BaSO4) and then the sulphate concentration is sought by reading the standard curve.

A 100 ml of sample was measured in a 250 ml Erlenmeyer flask and 5 ml of reagent added and mixed on a stirring device. A spoonful of barium chloride was put into the solution for 60 seconds while keeping the stirring speed constant. The solution was put into the absorbance cell and the turbidity measurement was made for 4 minutes with an interval of 30 seconds, the process was unrolled after stirring time. The preparation of the curve was made with a standard sulphate solution. The result was obtained from the calibration curve and expressed in mg / L. Finally the concentration of sulfate (SO_4^{2-}) was found by using the following formula.

$$\text{Sulfate (SO}_4^{2-}) = \text{mg of sulfate} \times \frac{1000}{\text{volume of the sample (ml)}}$$

3.6.8. Nitrate

The hydrazine reduction method was used for the determination of nitrate concentration (NO3-). A volume of 10.0 ml of the sample was pipetted into a test tube. An addition of 1.0 ml of 1.3 M NaOH (aq) to the test tube and carefully mixed. The nitrate is heated with a temperature of (37 °C) to convert it into nitrite a sample with 1.0 ml of hydrazine sulfate which is under an alkaline condition and mixed gently, and finally catalyzed by the addition of cupric ions. The result of the nitrite, along with the main nitrates, was mixed to react with the sulfanilamide to form a diazo compound. Then the diazo compound was reacted with N- (1-naphthyl) Ethylene diamine dihydrochloride to form an azo dye in an acidic medium. Absorbance of the light red azo dye is measured at 520 nm and the concentration of nitrate nitrogen plus nitrite nitrogen was found by
comparison with a series of standards. Nitrate can be determined by subtracting the nitrite result from the nitrite plus nitrate result.

3.6.9. **Determination of Calcium (Ca++), Magnesium**

In the laboratory the sample of calcium and magnesium were diluted appropriated and aspirated. A blank solution has been prepared and Atomic Absorption spectrophotometer was used for ion analyzes, with acetylene gas as a fuel and air as oxidizer. Calibration curves were effectively prepared for all the metals differently by using the concentration of the standard solutions. The results of these samples were aspirated into the air-acetylene flame and the concentrations of the metal ion were found from the calibration curves. The absorbance of the blank has been noted before the analysis of the different samples.

3.6.10. **Bicarbonate**

The principle of analyzing the bicarbonate in drinking water. It was prepared a volume of 50 ml for the sample and has put in a volumetric flask. Second step it placed the 50 mL of water sample in a beaker. The burette was filled to zero level with a solution hydrochloric acid. It was Calibrated the pH meter and placed the electrode into the sample and determined titrimetric against standard hydrochloric acid solution.

3.7. **Determination of Water Quality Index(WQI)**

WQI played an important role in the assessment of groundwater quality. It has been used by many researchers for the suitability of groundwater. However, WQI has been developed by many international organizations and institutions across the world such as: National Sanitation Foundation Water Quality Index (NSFWQI), Weight Arithmetic Water Quality Index (WAWQI), Canadian Council of Ministers of the Environment Water Quality Index (CCMEWQI), Oregon Water Quality Index (OWQI) (Kumar Sharma P et al., 2016). Many researchers have used Weight Arithmetic Water Quality Index (WAWQI) method in order to compute the water quality parameters (Olayiwola Oni., 2016; KUMAR A et al., 2014).

In this study, Weight Arithmetic Method was selected. There are four steps for the calculation:

First step: Assigning the weight for each water quality parameter. The value of weight varies from 5 to 1 where the high number will be given to one parameter which has an important impact on
assessment of water quality. As an example Nitrate is an important parameter and was assigned 5, and the lowest value of 1 was be given to Bicarbonate (Abraham Bairu Gebrehiwot, 2011).

Second step: Determination of relative weight by the following formula:

\[
W_i = \frac{w_i}{\sum_{i=1}^{n} w_i}
\]

- \(w_i\) = relative weight
- \(w_i\) = weight of each parameter
- \(n\) = number of parameter

Third step: Determination quality rating scale according to (Hema Latha. T.et al., 2012)

\[
q_i = \left(\frac{C_i}{S_i} \right) \times 100
\]

- \(C_i\) = concentration of the parameter
- \(S_i\) = concentration of each parameter of water standards (WHO 2004)

Fourth step: computing the Sub index of ith chemical parameter (K.Ambiga, 2016)

\[
SI = W_i \times q_i
\]

- \(SI\): the sub index of ith parameter
- \(q_i\) = is rating scale of each parameter

Finally, the calculation of WQI:

\[
WQI = \sum SI
\]
Table 3: Summarize the weightage value of the parameter and the concentration given by WHO

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Units</th>
<th>Standard (SI) WHO</th>
<th>Weightages (WI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Température</td>
<td>°C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>pH</td>
<td>Unité de</td>
<td>8.5</td>
<td>4</td>
</tr>
<tr>
<td>Electric Conductivity</td>
<td>μδ/cm</td>
<td>2000</td>
<td>2</td>
</tr>
<tr>
<td>TDS</td>
<td>mg/l</td>
<td>1000</td>
<td>2</td>
</tr>
<tr>
<td>Calcium (Ca++)</td>
<td>Mg/l</td>
<td>200</td>
<td>3</td>
</tr>
<tr>
<td>Magnésium(Mg++)</td>
<td>mg/l</td>
<td>150</td>
<td>2</td>
</tr>
<tr>
<td>Sodium(Na⁺)</td>
<td>mg/l</td>
<td>200</td>
<td>2</td>
</tr>
<tr>
<td>Potassium (K⁺)</td>
<td>mg/l</td>
<td>200</td>
<td>1</td>
</tr>
<tr>
<td>Chloride (Cl⁻)</td>
<td>mg/l</td>
<td>250</td>
<td>3</td>
</tr>
<tr>
<td>Sulfates(SO₄⁻)</td>
<td>SO₄⁻-mg/l</td>
<td>250</td>
<td>2</td>
</tr>
<tr>
<td>Nitrates(NO₃⁻)</td>
<td>mg/l</td>
<td>50</td>
<td>3</td>
</tr>
<tr>
<td>Nitrites(NO₂⁻)</td>
<td>NO₂⁻-mg/l</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Bicarbonates(HCO₃⁻)</td>
<td>HCO₃⁻-mg/l</td>
<td>200</td>
<td>2</td>
</tr>
<tr>
<td>Ammonium(NH₄⁺)</td>
<td>NH₄⁺Mg/l</td>
<td>1.5</td>
<td></td>
</tr>
<tr>
<td>Phosphate(PO₄⁻)</td>
<td>PO₄⁻-Mg/l</td>
<td>0.5</td>
<td>1</td>
</tr>
</tbody>
</table>

Table 4: Water Quality Index Designations (Bairu.A et al., 2013)

<table>
<thead>
<tr>
<th>Designation</th>
<th>Index Value</th>
</tr>
</thead>
<tbody>
<tr>
<td><50</td>
<td>Excellent Water</td>
</tr>
<tr>
<td>50-100</td>
<td>Good Water</td>
</tr>
<tr>
<td>100-200</td>
<td>Poor Water</td>
</tr>
<tr>
<td>200-300</td>
<td>Very Poor Water</td>
</tr>
<tr>
<td>>300</td>
<td>Unfit for Drinking</td>
</tr>
</tbody>
</table>
3.8. GIS Method

The data of the study area was downloaded from the website of DIVA-GIS. This data was used to generate a map of study area with the help of ARCGIS 10.3. The water samples were analyzed in the laboratory against international standards (WHO, 2004) combined with Algerian standards. It was organized in the excel worksheet. GPS was used to determine the localization of each borehole.

The spatial distribution tool was used to determine the distribution of water quality parameters. Interpolation technique which is IDW is used to determine the thematic layer of water parameter such as pH, EC, TDS, Calcium, Magnesium.…

In order to organize the methodology of the work, Flow chart method was created.
Figure 4: flow chart

1. Data collection
2. Data Input
3. Database Creation
 - Spatial Database
 - Location Map of Study Area
 - Interpolation
 - Spatial Distribution Map
4. Attribute Database
 - Physico Chemical Analysis
 - Water Quality Data Generation
 - Estimation of WQI
 - Generation Map of WQI
5. Data Interpretation
CHAPTER FOUR: RESULTS AND DISCUSSION

4. RESULTS AND DISCUSSION

4.1. Variation of groundwater quality parameters

This chapter presents results of the physico-chemical analysis of groundwater samples such as pH, electrical conductivity and turbidity as taken from field sampling.

4.1.1. pH

The value of pH of water samples in the study area ranges from 7.65 to 8.03. According to the guideline of WHO (2004) and Algeria Standard the permissible limit of pH is between 6.5 – 9. All the water samples analyzed fell within this limit. The groundwater of this study area is alkaline, that is, it has a pH > 7.0. In addition, in the same region (Bouderbala, 2017) found the same value of pH to be in the range from 7.4 to 8.3.

![Mean Concentration of pH](image)

Figure 5: Mean concentration of pH

4.1.2. Electrical Conductivity (EC)

High amount of dissolved solids in the water can produce distress in livestock. The EC of the groundwater samples in the study area ranges from 551 to 1084 (μS/cm). It is in the permissible limit allowed by WHO (2011). The normal value is 2000 (μS/cm). It was observed that at the location of borehole 10 the highest mean value of 1084 μS/cm was recorded (figure 6). The occurrence of high electrical conductivity values in some parts of the area might be due to addition of some salts through the prevailing agricultural activities or by rain fall leaching into the
groundwater. All the values recorded for electrical conductivity were below the guideline value of 2000 μS/cm for water stipulated by the WHO (2011).

![Mean Concentration of EC](image)

Figure 6: Mean Concentration of EC

4.1.3. Total Dissolved (TDS)

Total dissolved Solids are generally due to the quantity of matter suspended in water or wastewater (K.Ambiga, R. Anna Durai, 2013). The concentration of TDS of the study area ranges from 216-535 mg/l in groundwater samples. All observed water samples are in permissible limit of 1000 mg/l.

Groundwater with TDS values less than 500 mg/L can be considered as good for drinking purpose (WHO, 1984). The presence of high levels of TDS in some of the sampled boreholes (010) may not be good to the users and may cause scaling in water pipes.
4.1.4. Calcium (Ca++)

Calcium originates from natural and anthropological activities. It may be internal when water flows inside of an aquifer. The values of calcium in groundwater in study area range between 64 to 124 mg/l which are in the permissible limit of the standards of (WHO, 2004) 200 mg/l.

4.1.5. Magnesium
High concentration of magnesium can cause hard water. The content of magnesium in the groundwater samples ranged from 43.2 mg/l to 74.4 mg/l and it has an average value of 55.44 mg/l. All the values of magnesium are within the WHO limit (150mg/l).

![Chart Title](image)

Figure 9: Mean Concentration of Magnesium

4.1.6. Sodium

The values of sodium in the groundwater sample ranged from 48 to 806 mg/l. According to (WHO, 2004) and Algerian Standard, the maximum concentration in drinking water may not exceed 200 mg/l. Sodium, like other alkaline metals is the only metal found in significant quantities in natural waters. The primary source of the sodium ions in natural water is from the release of soluble sodium products.
4.1.7. Potassium

The mean concentration of potassium ranges from 4.04 mg/L at sampling station borehole (F13) to 16.23 mg/L at sampling station borehole (N2). The maximum permissible limit given by WHO (2004) is 200 mg/l.

The borehole (F13) had a higher concentration of potassium than the other boreholes, which can be explained by the leakage of domestic and animal sewage and fertilizers applied to farms into this borehole.
4.1.8. Chloride

The mean values of chloride in this study area ranged from 29 at sampling station borehole 03 to 92.2 mg/L at sampling station borehole 02. The permissible limit of chloride is given by (WHO, 2004) is 250 mg/l. In this case the concentrations of chloride are in the permissible limit of WHO.

Chloride is an important parameters used to assess the quality of water. The concentration of chloride in all the boreholes sampled were within the 250 mg/L guideline value prescribed by Algerian standard and WHO.

![Chart Title](chart.png)

Figure 12: Mean concentration of chloride

4.1.9. Sulfate

Catharsis, dehydration and gastrointestinal irritation can occur due to the accumulation of large amounts of sulfates. It can be the cause of corrosion in the water distribution system.

The mean concentration of sulphates ranged from 84.6 mg/L at sampling station F13 to 179 mg/L at sampling station N8 (Figure 13) in the boreholes. All the samples were below the 250 mg/L guideline value prescribed by Algerian Standard and WHO (2004).
4.1.10. Nitrate

The value of concentration in the groundwater of study ranged from 0.38 mg/L at sampling station N3 to 28.6 mg/L at sampling station N5 004. The permissible limit of nitrate is given by (WHO, 2004) and Algerian Standard is about 50 mg/l. The concentration of nitrates in all the sampled boreholes used for the present study was within the 50.0 mg/L guideline value prescribed by WHO (Figure 14).

Nitrates can occur in trace quantities in surface water but it can produce a huge amount in the groundwater. It has a toxic effect on certain aquatic organisms when the level of concentration is above 100 mg/l.
4.1.11. Bicarbonate

The high amount of bicarbonate in water is due to the biological process of plant roots, and from the oxidation of organic matter into the soil, then in the rock and from other chemical reactions (Raju, 2006). The concentration of bicarbonate varied between 190-272 mg/l and the total permissible limit is about 200 mg/l.
Table 5: Statistical summary of groundwater quality parameter

<table>
<thead>
<tr>
<th>BORE HOLE</th>
<th>XUT M</th>
<th>YUT M</th>
<th>pH</th>
<th>conductivité (μs/cm)</th>
<th>TDS (mg/l)</th>
<th>ca++ (mg/l)</th>
<th>mg++ (mg/l)</th>
<th>na+ (mg/l)</th>
<th>k+ (mg/l)</th>
<th>cl- (mg/l)</th>
<th>so4- (mg/l)</th>
<th>no3- (mg/l)</th>
<th>Hco3- (mg/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Naam a (N3)</td>
<td>75156</td>
<td>8.8146</td>
<td>36835</td>
<td>18.377</td>
<td>7.78</td>
<td>775</td>
<td>387</td>
<td>84</td>
<td>50.4</td>
<td>124</td>
<td>11.1</td>
<td>77.9</td>
<td>147</td>
</tr>
<tr>
<td>Naam a (F1)</td>
<td>74833</td>
<td>2.4578</td>
<td>36803</td>
<td>84.901</td>
<td>7.9</td>
<td>993</td>
<td>496</td>
<td>104</td>
<td>62.4</td>
<td>806</td>
<td>7.3</td>
<td>92.2</td>
<td>141</td>
</tr>
<tr>
<td>Naam a (N2)</td>
<td>75906</td>
<td>6.11</td>
<td>37003</td>
<td>65.898</td>
<td>8.03</td>
<td>776</td>
<td>388</td>
<td>100</td>
<td>60</td>
<td>51</td>
<td>16.23</td>
<td>29</td>
<td>124</td>
</tr>
<tr>
<td>Naam a (F13)</td>
<td>74728</td>
<td>8.4264</td>
<td>36829</td>
<td>83.739</td>
<td>7.89</td>
<td>551</td>
<td>224</td>
<td>72</td>
<td>43.2</td>
<td>57</td>
<td>4.04</td>
<td>38</td>
<td>84.6</td>
</tr>
<tr>
<td>Naam a (N4)</td>
<td>74394</td>
<td>4.0346</td>
<td>36799</td>
<td>94.775</td>
<td>7.73</td>
<td>772</td>
<td>391</td>
<td>72</td>
<td>43.2</td>
<td>48</td>
<td>5.03</td>
<td>29</td>
<td>101</td>
</tr>
<tr>
<td>Naam a (N6)</td>
<td>74843</td>
<td>4.4846</td>
<td>36858</td>
<td>52.624</td>
<td>7.72</td>
<td>560</td>
<td>231</td>
<td>64</td>
<td>50.4</td>
<td>55</td>
<td>6</td>
<td>34.2</td>
<td>95.2</td>
</tr>
<tr>
<td>Naam a (N7)</td>
<td>75014</td>
<td>9.5972</td>
<td>36856</td>
<td>45.729</td>
<td>7.74</td>
<td>670</td>
<td>216</td>
<td>88</td>
<td>52.8</td>
<td>53</td>
<td>6</td>
<td>37.2</td>
<td>148</td>
</tr>
<tr>
<td>Naam a (N5)</td>
<td>74624</td>
<td>3.8833</td>
<td>36819</td>
<td>24.43</td>
<td>7.71</td>
<td>675</td>
<td>318</td>
<td>88</td>
<td>52.8</td>
<td>51</td>
<td>4</td>
<td>52.4</td>
<td>113</td>
</tr>
<tr>
<td>Naam a (F2)</td>
<td>74622</td>
<td>3.6481</td>
<td>36841</td>
<td>28.198</td>
<td>7.86</td>
<td>763</td>
<td>328</td>
<td>108</td>
<td>64.8</td>
<td>139</td>
<td>7</td>
<td>69.8</td>
<td>128</td>
</tr>
<tr>
<td>Naam a (N8)</td>
<td>75019</td>
<td>3</td>
<td>36840</td>
<td>52</td>
<td>7.65</td>
<td>1084</td>
<td>535</td>
<td>124</td>
<td>74.4</td>
<td>124</td>
<td>8.1</td>
<td>77.1</td>
<td>179</td>
</tr>
<tr>
<td>Minimum</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>7.65</td>
<td>551</td>
<td>216</td>
<td>64</td>
<td>43.2</td>
<td>48</td>
<td>4</td>
<td>29</td>
<td>84.6</td>
</tr>
<tr>
<td>Maximum</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>8.03</td>
<td>1084</td>
<td>535</td>
<td>124</td>
<td>74.4</td>
<td>806</td>
<td>16.23</td>
<td>92.2</td>
<td>179</td>
</tr>
<tr>
<td>Average</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>7.801</td>
<td>761.9</td>
<td>351.4</td>
<td>90.4</td>
<td>55.44</td>
<td>150.8</td>
<td>7.48</td>
<td>53.68</td>
<td>126.08</td>
</tr>
</tbody>
</table>
4.2. **Spatial analysis of groundwater quality parameters**

Analysis of groundwater quality is very helpful in assessing the suitability of water for different purposes. Generation of spatial distribution maps of different water quality parameters such as pH, electric conductivity, total dissolved, Calcium, magnesium, sodium, potassium, chloride, sulfate, nitrate, nitrite and bicarbonate involves integrating the attribute and spatial data.

4.2.1. **pH**

The value of pH of water samples in the study area are ranges from 7.65 to 8.03. The high permissible limit for pH in clean water recommended by the WHO was 9.2 mg/l. Spatial analysis of pH concentration was found in the following figure (5). It was found that the majority of the groundwater samples which are located in North-West to South-East displayed a lower pH value, except for two groundwater samples (Naãma F1 and Naãma N2) which are located in North-East which have a maximum value of pH.
Figure 16: Spatial distribution map of pH in Naãma
4.2.2. Electric Conductivity (EC)

The presence of dissolved salts in water can affect the electrical conductivity at 25°C. The spatial distribution of EC of the groundwater samples in the study area range from 551 to 1084 (µΩ/cm). Figure (6) showed the spatial distribution of EC in Nařma.

Figure 17: Spatial distribution map of EC (mg/l) in Nařma
4.2.3. Total Dissolved

The concentration of TDS of the study area ranges from 216-535 mg/l in groundwater samples. According to the WHO (2004), the status of groundwater samples was classified into four steps which are: from (300-600mg/l) are good, (600-900 mg/l) are fair, groundwater sample is poor (900-1200mg/l) and from (>1200 mg/l) are not drinkable (Bairu. A et al., 2013). The spatial analysis for TDS of this study was classified into nine categories and are presented in the following figure (7). It was showed that most of boreholes in the study area range from (217 – 358mg/l) which are located in central part of study area. There is huge concentration of TDS (394 – 535mg/l) located in small central part.

Figure 18: Spatial distribution map of TDS (mg/l) in Naäma
4.2.4. Calcium

Calcium has an origin from natural and anthropogenic. (Raju.N et al., 2011) defined the rate of calcium in water into three categories which are from (0-75 mg/l) are low, (75-200 mg/l) moderate and (>200 mg/l) are poor quality. According to these values the spatial analysis of calcium in Naãma, almost all area has low (From Nord-West to South-Est) and moderate (From Nord to Nord-East) concentration of calcium. The figure (8) shown the spatial distribution of calcium is ranged from (64 -124 mg/l).

Figure 19: Spatial distribution map of Calcium (mg/l) in Naãma
4.2.5. Magnesium

Magnesium is the main cause of hard water when the concentration is very high. It has been shown in the groundwater samples of Naãma the spatial analysis of magnesium is ranging from (43.2 – 74.4 mg/l) where the value of magnesium is lower than calcium (64 – 124 mg/l). In the map, it was shown that the magnesium concentration in the groundwater samples of study area ranged from (43.2 – 74.4 mg/l) with the average and standard deviation as 55.44 and 9.89 mg/l. There is a maximum value at Naãma (N8) 74.4 mg/l and minimum value at Naãma (F13) and Naãma (N4).

Figure 20: Spatial distribution map of Magnesium (mg/l) in Naãma
4.2.6. Sodium

The association of anions and the temperature in the water solution may change the taste threshold concentration of sodium (Sadat-Noori S. M et al., 2013). According to the WHO (2004), the maximum permissible limit of sodium in drinking water is 200 mg/l. The values of sodium in study area are between 48 to 806 mg/l (Table 5). High sodium values are showed in central and south-east part of the study area (figure 10). The top high concentration of sodium (806 mg/l) was observed the in groundwater sample (Naama F1) which is located in the down topographic area that can receive the pollution from agricultural runoff and enter into the groundwater due to leaching.

![Spatial distribution map of Sodium (mg/l) in Naama](image-url)

Figure 21: Spatial distribution map of Sodium (mg/l) in Naama
4.2.7. Potassium

Potassium is classed as seventh among the elements in terms of abundance. The general concentration in drinking water seldom can attain 20 mg/l (K.Ambiga, 2016). According to WHO (2004), the recommended daily requirement of potassium is greater than 3,000 mg/l. The spatial analysis of potassium of groundwater samples in the study area are shown in the figure 11. The concentration of potassium varies from 4 to 16.23 mg/l in the study area (Table 5). It was shown that the majority of the samples had potassium concentration within the desirable limit except for the groundwater sample Naãma (N2).

Figure 22: Spatial distribution map of Potassium (mg/l) in Naãma
4.2.8. Chloride

There is a presence of low concentration of chloride in most natural water. High concentration of chloride can make water undrinkable and destroy supply pipes as well as vegetables and plants. Its concentration in the study area varies between 29 – 92.2 mg/l with average and standard deviation as 53.68 and 23.55965 respectively. The spatial analysis of chloride concentration is shown in the following figure 12 below. The concentration of chloride in all groundwater samples of the study area of Naâma was found less than WHO (2004) guidelines and Algerian standard, but relatively higher concentration of chloride was found in central and southeastern part of the Naâma. In the same study (RAHMANI, 2010) find out that in the North West and around part of Ain Sefra close to Naâma there was higher amount of chloride concentration.

Figure 23: Spatial distribution map of Chloride (mg/l) in Naâma
4.2.9. Sulfate

Sulfates originate from the dissolution of some minerals such as gypsum and anhydrite. Salt water intrusion and acid rock drainage are the main causes of the presence of sulfate in drinking water. The presence of sulfate in drinking water can make a laxative effect for consumers and very bad taste (Sadat-Noori S. M et al., 2013). The values of sulfate concentration are between 84.6-179 mg/l. High sulfate concentrations were found in groundwater samples Naâma (N8) (179 mg/l). The spatial analysis of sulfate is disturbed in south east and central part of the study area. Figure (13)

Figure 24: Spatial distribution map of Sulfate (mg/l) in Naâma
4.2.10. Nitrate

The dissolution of nitrate in the water is very fast, and in groundwater the quantity of nitrate is higher than in surface water (TSEGAYE, 2014). Nitrates can find in traces quantities in surface water but it can produce a huge amount in the groundwater. It has some toxic effect for a certain aquatic organism when the level of concentration is above to 100 mg/l. The values of nitrate concentration in the groundwater samples of study area had high spatial distribution and vary from 0.38 to 28.6 mg/l with average and standard deviation of 14.881 and 9.92 mg/l respectively. It was observed from the statistical summary of water quality parameters (table 5) and figure (14) below, the maximum value of nitrate concentration was found on the central and south western sides of the study area.

Figure 25: Spatial distribution map of Nitrate (mg/l) in Naäma
4.2.11. Bicarbonate

The spatial distribution of bicarbonate concentration in the groundwater samples was shown in the following figure (15) below. According to the spatial distribution the concentration of bicarbonate ranged from 190 to 270 mg/l. The maximum values of bicarbonate concentration were found in groundwater samples in Naâma (N5). The spatial analysis of bicarbonate concentration is disturbed in central, west and south east part of the study area.

Figure 26 : Spatial distribution map of bicarbonate (mg/l) in Naâma
4.3. **Calculation of water Quality Index (WQI)**

The water quality index has been computed for this year 2018 in order to find the suitability of groundwater for drinking purposes. The first step in the computation of WQI was to choose the water quality parameters. The water quality parameters selected were pH, electric conductivity, total dissolved, Calcium, magnesium, sodium, potassium, chloride, sulfate, nitrate, nitrite and bicarbonate.

The second step was the calculation of the weights and relative weights for each water quality parameter. So the weightages were defined by using the formula mentioned in the methodology, and are shown in the following table 6

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Units</th>
<th>Standard (SI)</th>
<th>Weightages (wi)</th>
<th>Relative weight(Wi)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperature</td>
<td>°C</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>pH</td>
<td>8.5</td>
<td>4</td>
<td>0.142857143</td>
<td></td>
</tr>
<tr>
<td>Electric Conductivity</td>
<td>µδ/cm</td>
<td>2000</td>
<td>2</td>
<td>0.071428571</td>
</tr>
<tr>
<td>TDS</td>
<td>mg/l</td>
<td>1000</td>
<td>2</td>
<td>0.071428571</td>
</tr>
<tr>
<td>Calcium (Ca++)</td>
<td>Mg/l</td>
<td>200</td>
<td>3</td>
<td>0.107142857</td>
</tr>
<tr>
<td>Magnesium(Mg++)</td>
<td>mg/l</td>
<td>50</td>
<td>2</td>
<td>0.071428571</td>
</tr>
<tr>
<td>Sodium(Na+)</td>
<td>mg/l</td>
<td>200</td>
<td>2</td>
<td>0.071428571</td>
</tr>
<tr>
<td>Potassium (K+)</td>
<td>mg/l</td>
<td>200</td>
<td>1</td>
<td>0.035714286</td>
</tr>
<tr>
<td>Chloride (Cl-)</td>
<td>mg/l</td>
<td>250</td>
<td>3</td>
<td>0.107142857</td>
</tr>
<tr>
<td>Sulfates(So4-)</td>
<td>So4-mg/l</td>
<td>250</td>
<td>2</td>
<td>0.071428571</td>
</tr>
<tr>
<td>Nitrates(No3-)</td>
<td>mg/l</td>
<td>50</td>
<td>3</td>
<td>0.107142857</td>
</tr>
<tr>
<td>Bicarbonates(Hco3-)</td>
<td>Hco3- mg/l</td>
<td>200</td>
<td>2</td>
<td>0.071428571</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td>Total=27</td>
<td></td>
</tr>
</tbody>
</table>
Table 7: WQI classification for the Groundwater sample

<table>
<thead>
<tr>
<th>ID</th>
<th>Sample Stations</th>
<th>WQI</th>
<th>Classification</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Naama (N3)</td>
<td>53.76706</td>
<td>Good Water</td>
</tr>
<tr>
<td>2</td>
<td>Naama (F1)</td>
<td>85.86922</td>
<td>Good Water</td>
</tr>
<tr>
<td>3</td>
<td>Naama (N2)</td>
<td>52.57544</td>
<td>Good Water</td>
</tr>
<tr>
<td>4</td>
<td>Naama (F13)</td>
<td>48.09789</td>
<td>Excellent Water</td>
</tr>
<tr>
<td>5</td>
<td>Naama (N4)</td>
<td>48.21005</td>
<td>Excellent Water</td>
</tr>
<tr>
<td>6</td>
<td>Naama (N6)</td>
<td>44.6105</td>
<td>Excellent Water</td>
</tr>
<tr>
<td>7</td>
<td>Naama (N7)</td>
<td>49.10983</td>
<td>Excellent Water</td>
</tr>
<tr>
<td>8</td>
<td>Naama (N5)</td>
<td>54.22632</td>
<td>Good Water</td>
</tr>
<tr>
<td>9</td>
<td>Naama (F2)</td>
<td>62.58127</td>
<td>Good Water</td>
</tr>
<tr>
<td>10</td>
<td>Naama (N8)</td>
<td>63.75071</td>
<td>Good Water</td>
</tr>
</tbody>
</table>

The last step was calculation of the sub index after determining the relative weights and quality rating scale. Then the water quality index values were found using this formula. WQI has been classified into five classes (Table 4): excellent, good, poor, very poor and unfit for drinking.

Geographical Information System was used to identify the area of suitable water quality based on the water quality parameters. Spatial distribution maps of WQI for the year 2018 were created for this area by using the inverse distance weighted method.

The entire water quality index (WQI) of groundwater in Naãma was found to be either excellent or good. In some boreholes of the area like Naãma (F13), Naãma (N4), Naãma (N6), Naãma (N7) the water quality was found to be excellent and suitable for drinking purposes. Meanwhile, the water quality index in boreholes for the area like Naãma (N3), Naãma (F1), Naãma(N2), Naãma (F13), Naãma, (N4) Naãma (N6), Naãma (N7), Naãma (N5), Naãma (F2), Naãma (N8) was found good. The variation of the WQI for each sampling point in the area is shown in the figure (6).
Figure 27: The value of WQI for groundwater sample
CHAPTER FIVE: CONCLUSION AND RECOMMENDATION

5.1. CONCLUSION

The objective of this study was to create a groundwater quality map to easily assess the quality of groundwater in Naãma. Spatial and inverse distance weighting were used through GIS in order to interpolate the data in the area. These methods have shown their performance in terms of realization of groundwater quality in Naãma.

The physico-chemical parameters which were chosen from different sites of groundwater of the study area were analyzed in the laboratory. The results report that the different water quality parameters such as pH conductivity, total dissolved, calcium, magnesium, potassium, chloride, sulfate and nitrate were in the permissible limit given by the guideline of WHO and Algerian standard. However, bicarbonate was found to exceed the permissible limit, but it does not have any impact on drinking water purposes.

The WQI classification for each groundwater sample in the study area shown in table 7 and figure 16 ranged from 44.61 to 85.86. The estimation found that 40% of the groundwater samples were classified to be in excellent condition and the rest of 60% were found to be in a good water class according to the calculation of WQI method.

The spatial distribution maps created for several physico-chemical parameters with the ArcGIS software could be helpful for designing water program. The combination of WQI and GIS can be used by water engineering actors and decision makers in order to understand and assess groundwater quality in the study area.
5.2. RECOMMENDATIONS

i. It is recommended to use GIS and its application to produce maps to communicate the water situation to the public who are managing the groundwater resources in a particular area. Water quality indices should be used to understand effectively the situation of water quality.

ii. It is recommended further investigation of microbiological parameter must be carried out in order to study the degree of pollution and anthropogenic effect on groundwater of this area.

iii. Groundwater quality monitoring should be a very important routine procedure in order to secure the protection and conservation of groundwater across the region.
References

Bairu.A et al. (2013). USE OF GEOGRAPHIC INFORMATION SYSTEM AND WATER QUALITY INDEX TO ASSESS SUITABILITY OF GROUNDWATER QUALITY FOR DRINKING PURPOSES IN HEWANE AREAS TIGRAY, NORTHERN ETHIOPIA. Ethiopian Journal of Environmental Studies and Management, 06(02), 110-121.

TSEGAYE, A. (2014). ASSESSING GROUND WATER QUALITY OF ADDIS ABABA CITY BY USING GEOGRAPHICAL INFORMATION SYSTEM.

APPENDIX I: DETERMINATION OF WQI

<table>
<thead>
<tr>
<th></th>
<th>WQI Classification</th>
<th>Naama (N3)</th>
<th>Naama (F1)</th>
<th>Naama(N2)</th>
<th>Naama (F13)</th>
<th>Naama (N4)</th>
<th>Naama (N6)</th>
<th>Naama (N7)</th>
<th>Naama (N5)</th>
<th>Naama (F2)</th>
<th>Naama (N8)</th>
</tr>
</thead>
<tbody>
<tr>
<td>QI</td>
<td></td>
<td>91.529</td>
<td>92.941</td>
<td>94.470</td>
<td>92.823</td>
<td>90.941</td>
<td>90.823</td>
<td>91.058</td>
<td>90.705</td>
<td>92.470</td>
<td>90.584</td>
</tr>
<tr>
<td>Sii</td>
<td></td>
<td>13.0</td>
<td>13.2</td>
<td>13.5</td>
<td>13.2</td>
<td>12.9</td>
<td>12.9</td>
<td>13.0</td>
<td>12.9</td>
<td>12.9</td>
<td>12.8</td>
</tr>
<tr>
<td>QI</td>
<td></td>
<td>38.7</td>
<td>49.6</td>
<td>38.8</td>
<td>27.5</td>
<td>38.6</td>
<td>53</td>
<td>33.5</td>
<td>33.7</td>
<td>38.1</td>
<td>12.8</td>
</tr>
<tr>
<td>Sii</td>
<td></td>
<td>5.5</td>
<td>5.5</td>
<td>5.3</td>
<td>5.6</td>
<td>5.5</td>
<td>7</td>
<td>6</td>
<td>3</td>
<td>13.0</td>
<td>6</td>
</tr>
<tr>
<td>QI</td>
<td></td>
<td>38.7</td>
<td>49.6</td>
<td>38.8</td>
<td>27.5</td>
<td>38.6</td>
<td>53</td>
<td>33.5</td>
<td>33.7</td>
<td>38.1</td>
<td>12.8</td>
</tr>
<tr>
<td>Sii</td>
<td></td>
<td>6</td>
<td>4</td>
<td>7</td>
<td>4</td>
<td>6</td>
<td>3</td>
<td>6</td>
<td>6</td>
<td>3</td>
<td>6</td>
</tr>
<tr>
<td>QI</td>
<td></td>
<td>2.7</td>
<td>3.5</td>
<td>2.7</td>
<td>1.6</td>
<td>2.7</td>
<td>1</td>
<td>1.5</td>
<td>2.2</td>
<td>3.2</td>
<td>3.8</td>
</tr>
<tr>
<td>Sii</td>
<td></td>
<td>4</td>
<td>6</td>
<td>4</td>
<td>3</td>
<td>6</td>
<td>9</td>
<td>4</td>
<td>8</td>
<td>7</td>
<td>6</td>
</tr>
<tr>
<td>QI</td>
<td></td>
<td>1.5</td>
<td>5.6</td>
<td>1.5</td>
<td>5.5</td>
<td>5.5</td>
<td>5.5</td>
<td>1.5</td>
<td>2.2</td>
<td>5.7</td>
<td>8</td>
</tr>
<tr>
<td>Sii</td>
<td></td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>5</td>
<td>4</td>
<td>4</td>
<td>5</td>
<td>4</td>
<td>4</td>
<td>6</td>
</tr>
</tbody>
</table>

APPENDICES

ph	Conductivity	TDS	Ca++	Mg++	Na+	K+	Cl-	SO4-	NO3-	Ca++	Mg++	Na+	K+	Cl-	SO4-	NO3-	QI	Sii	WQI Classification								
	QI	Sii																									
Naama (N3)	91.529	13.0	38.7	5.5	2.7	6	4.5	100	8	7.2	62	4.43	92.5	3.3	31.1	3.3	58.8	4.2	0.7	8	0.83	8.11	53.77	Good Water			
Naama (F1)	92.941	13.2	49.6	5.5	3.5	6	4.5	124	8	8.91	40	28.7	60.83	2.1	7	36.8	3.9	56.4	4.0	4.1	4	4.4	1.1	7.64	85.87	Good Water	
Naama(N2)	94.470	13.5	38.8	5.3	2.7	8	2.7	135.2	5	10	25	5.182	49.6	3.5	1.2	49.6	4	6	1.2	0.1	1.2	4	12.7	8.04	52.58	Good Water	
Naama (F13)	92.823	13.2	27.5	5.6	1.97	4	3.8	86.4	6.17	28	5	2.04	33.67	1.2	0	15.2	3	33.8	2.4	2.4	1	6	1	12.7	9.50	48.10	Excellent Water
Naama (N4)	90.941	12.9	38.6	5.6	2.76	9	3.8	66	1.2	15	24	1.71	41.92	1.5	0	11.6	4.04	1	1.2	2.8	2.9	3	1	9.11	48.21	Excellent Water	
Naama (N6)	90.823	12.9	28.0	7	3.0	3	3.4	100	8.72	27	5	1.96	50	1.7	9	8	38.0	2.7	6	4	0.97	6.79	44.61	Excellent Water			
Naama (N7)	91.058	13.0	33.5	6	2.39	6	4.7	105	6.754	26	5	1.89	50	1.7	14.8	1.5	4.2	2.3	2.5	1	1.86	49.11	Excellent Water				
Naama (N5)	90.705	12.9	33.7	5	2.41	8	4.7	105	6.754	25	5	1.82	33.33	1.1	9	6	45.2	3	2	3	57.3	6.11	54.23	Good Water			
Naama (F2)	92.470	13.2	38.1	5	2.73	3	5.7	129	9	6.92	69	5	4.96	58.33	2.0	8	2.9	51.2	6	6	13.3	9.5	62.58	Good Water			
Naama (N8)	90.584	12.8	54.2	6	3.87	4	6.6	148	8	10.6	62	4.43	67.50	2.4	1	30.8	3.3	51	20	2	0.93	8.46	63.75	Good Water			
APPENDIX II: Data for Temperature and Precipitation obtained from Naãma Station: LAT:33.26 and LONG: -0.3 with the help of (Climate Engine)

<table>
<thead>
<tr>
<th>Year</th>
<th>Max</th>
<th>Min</th>
<th>Precipitation</th>
</tr>
</thead>
<tbody>
<tr>
<td>1980</td>
<td>22.47204781</td>
<td>8.581611202</td>
<td></td>
</tr>
<tr>
<td>1981</td>
<td>23.25337452</td>
<td>9.032233425</td>
<td>124.2282</td>
</tr>
<tr>
<td>1982</td>
<td>22.45934575</td>
<td>8.957570411</td>
<td>244.7072</td>
</tr>
<tr>
<td>1983</td>
<td>23.86137589</td>
<td>9.313678356</td>
<td>129.1678</td>
</tr>
<tr>
<td>1984</td>
<td>23.86775301</td>
<td>8.565025683</td>
<td>153.3635</td>
</tr>
<tr>
<td>1985</td>
<td>23.83840082</td>
<td>9.280516712</td>
<td>191.5149</td>
</tr>
<tr>
<td>1986</td>
<td>22.61476082</td>
<td>9.040139452</td>
<td>261.7178</td>
</tr>
<tr>
<td>1987</td>
<td>24.12301562</td>
<td>10.13038548</td>
<td>176.6346</td>
</tr>
<tr>
<td>1988</td>
<td>23.55485683</td>
<td>9.504579235</td>
<td>194.5373</td>
</tr>
<tr>
<td>1989</td>
<td>23.21809644</td>
<td>9.684490137</td>
<td>210.27</td>
</tr>
<tr>
<td>1990</td>
<td>23.16179753</td>
<td>9.846542192</td>
<td>219.7077</td>
</tr>
<tr>
<td>1991</td>
<td>21.50336329</td>
<td>8.242552877</td>
<td>248.8094</td>
</tr>
<tr>
<td>1992</td>
<td>21.73041721</td>
<td>8.091182787</td>
<td>164.5459</td>
</tr>
<tr>
<td>1993</td>
<td>22.82651041</td>
<td>8.830649041</td>
<td>226.7662</td>
</tr>
<tr>
<td>1994</td>
<td>23.67179233</td>
<td>9.609844384</td>
<td>199.8699</td>
</tr>
<tr>
<td>1995</td>
<td>23.11484219</td>
<td>9.361564658</td>
<td>163.477</td>
</tr>
<tr>
<td>1996</td>
<td>22.28437787</td>
<td>8.818775683</td>
<td>222.2894</td>
</tr>
<tr>
<td>1997</td>
<td>23.51537644</td>
<td>9.730694247</td>
<td>225.1255</td>
</tr>
<tr>
<td>1998</td>
<td>23.62464685</td>
<td>9.32054</td>
<td>151.3799</td>
</tr>
<tr>
<td>1999</td>
<td>23.87187918</td>
<td>9.80833863</td>
<td>187.2162</td>
</tr>
</tbody>
</table>
APPENDIX III: Field visit

Water Treatment plan

Place of discharge of wastewater
Figure: Visit of wastewater treatment plan of Naãma

Meteorological Agency of Naãma
Appendices: Research budget

<table>
<thead>
<tr>
<th>№</th>
<th>Items</th>
<th>Quantity</th>
<th>Unit Price (in Dinar Dz)</th>
<th>Unit Price (in US dollars)</th>
<th>Total Price (in Dinar dollars)</th>
<th>Total (in US dollars)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Transport</td>
<td>2</td>
<td>11 000</td>
<td>104</td>
<td>22 000</td>
<td>208</td>
</tr>
<tr>
<td>2</td>
<td>Data Analysis and Data collection</td>
<td>1</td>
<td>190 400</td>
<td>1 800</td>
<td>190 400</td>
<td>1 800</td>
</tr>
<tr>
<td>3</td>
<td>Books</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Modelling groundwater system</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Groundwater Pollution in Africa</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Physical and Chemical Hydrogeology</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>10 600</td>
<td>100</td>
<td>31 800</td>
<td>300</td>
</tr>
<tr>
<td>4</td>
<td>Apparatus of physical</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Multiparameter EC 500</td>
<td></td>
<td>40 000</td>
<td>378</td>
<td>44 000</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Thermo Electronique</td>
<td></td>
<td>4000</td>
<td>38</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Miscellaneous</td>
<td></td>
<td>11 300</td>
<td>107</td>
<td>11 300</td>
<td>106</td>
</tr>
<tr>
<td></td>
<td>Grand Total</td>
<td></td>
<td>299 500</td>
<td>28 300 USD</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Appendix: Receipt

FAC T U R E N°04/2018

Client: Mohammed Mahamad Ali
Operation: ECHANTILLONAGE ET ANALYSES PHYSICOCHIMIQUES DES EAUX DE LA REGION DE NAAMA
Supplier: BET AFAK
Address: Ain Seffa
Date: 16/06/2018

<table>
<thead>
<tr>
<th>N°</th>
<th>Désignations</th>
<th>U</th>
<th>Quantité</th>
<th>Prix U</th>
<th>Montant</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Echantillonnage</td>
<td>U</td>
<td>10</td>
<td>4000.00</td>
<td>40000.00</td>
</tr>
<tr>
<td>2</td>
<td>Analyses physicochimiques</td>
<td>U</td>
<td>10</td>
<td>12000.00</td>
<td>120000.00</td>
</tr>
</tbody>
</table>

Arêté à la somme de :

Cents quatre vingt dix mille quatre cent dinars et zéro centimes

Le gérant de BET

INVOICE FOR BOOKS SUPPLY:

<table>
<thead>
<tr>
<th>S/No</th>
<th>Book Title</th>
<th>Amount (US Dollars)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Groundwater Pollution in Africa, by Y. Xu & B. Usher (Eds.) (2008)</td>
<td>100</td>
</tr>
<tr>
<td>3</td>
<td>Physical and Chemical Hydrogeology, by P. A. Domenico & F. W. Schwartz (1998)</td>
<td>100</td>
</tr>
</tbody>
</table>

TOTAL

500
Hotel El-Mekther Aïn Sefra W. Naama

Code fiscal N°090320181984245 01
RC: N° 99 B 2222880
ART N°: 4554010 001
TEL: 049 70 14 17 - **FAX:** 049 55 15 58

Facture N°: 8637
DATE: 13/05/2018
DOIT: Mrs Mohamed Mountassif
CHAMBRE: 221 - 1 FAX

Mois de Mai 2018

<table>
<thead>
<tr>
<th>Date</th>
<th>Chambre</th>
<th>Lit supplémentaire</th>
<th>Petit Déjeuner</th>
<th>Boissons caféteria</th>
<th>Cuisine</th>
<th>Lunch</th>
<th>Boissons cave</th>
<th>Dîner</th>
<th>Boissons cave</th>
<th>Téléphone</th>
<th>Salon de Thé</th>
<th>Divers</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.05.2018</td>
<td>2000,00</td>
<td>2000,00</td>
<td></td>
</tr>
<tr>
<td>13.05.2018</td>
<td>4000,00</td>
<td></td>
</tr>
<tr>
<td>14.05.2018</td>
<td></td>
</tr>
</tbody>
</table>

TOTAL du jour HT:
- 2000,00
- 4000,00
- 4000,00

TVA 5%:
- 40,00

Droit de Timbre:
- 40,00

Taxe de séjour:
- 20,00

TOTAL ht/TTC:
- 4060,00

SOIT: QUATRE MILLE SOIXANTE DA.

Bon de Livraison N°:

- **Date:** 12/05/2018
- **Client:** Mohamed Mountassif
- **Adresse:**
 - **Adresse:**
 - **Adresse:**
 - **Adresse:**

Signature:

Page: 49 | *Page*
BON DE LIVRAISON N° 049

Client : Mr MOUNTASIR Mohamed

<table>
<thead>
<tr>
<th>N°</th>
<th>Désignation</th>
<th>Qté</th>
<th>Prix HT</th>
</tr>
</thead>
<tbody>
<tr>
<td>01</td>
<td>Thermomètre électronique max/mini</td>
<td>01</td>
<td>4000.00</td>
</tr>
<tr>
<td>02</td>
<td>Multi paramètre EC500</td>
<td>01</td>
<td>4000.00</td>
</tr>
</tbody>
</table>

Total HT : 44000.00

Par

Gérant

l'interessé

E.U.R.L. GRAND HOTEL D'ORAN

DATE : 09-02-2018

Facture n° 309636

Note de Restaurant

<table>
<thead>
<tr>
<th>NO theoretical</th>
</tr>
</thead>
</table>
| 8 | 25.00
| 6 | 15.00
| 5 | 20.00
| 4 | 20.00
| 3 | 20.00
| 2 | 20.00
| 1 | 20.00

Total : 115.00

Grand Hotel d'Oran
Note de Restaurant

Facture n° 309636

Total : 115.00
<table>
<thead>
<tr>
<th>رقم السلك</th>
<th>رقم مراجع</th>
<th>موسم</th>
<th>توجيهات</th>
</tr>
</thead>
<tbody>
<tr>
<td>CP 30412345678</td>
<td></td>
<td>دار</td>
<td></td>
</tr>
</tbody>
</table>