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ABSTRACT 

 

Agriculture is considered as a vital activity for providing food to the increasingly growing 

population reaching 8.6 billion in 2030, according to the UN. Agriculture is directly tied to the 

availability of water and requires irrigation always. Although the world’s freshwater resources 

are scarce and in limited amounts, many of the existing irrigation systems and practices are 

highly inefficient, leading to a significant waste of water. Modern problems require modern 

solutions, the emergence of the cloud computing paradigm supported in shaping many of the 

existing solutions to tackle water resources management in agriculture, combining the latest 

technological developments from various fields. The principal purpose of this work is to 

demonstrate a novel approach for water resources management in precision agriculture by 

exploiting a context information management framework named FIWARE. The outcome is a 

complete context-aware system combined of the various Generic Enablers provided by 

FIWARE, capable of making autonomous irrigation decisions (using Complex Event 

Processing) which are not solely based on sensor-related measurements, but further on the 

integration of different sources of information such as weather forecast data from 

OpenWeatherMap. By doing so, optimal management of water resources according to the 

predicted weather conditions has been achieved within the system. 

 

 

 

 

 

 

 

 

Keywords: FIWARE, NGSI, OpenWeatherMap, Orion Context Broker, Context information 

management, Smart irrigation. 
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RÉSUMÉ 

 

L'agriculture est considérée comme une activité vitale pour l'alimentation d'une population qui 

atteint 8,6 milliards d'habitants en 2030, selon l'ONU, et qui ne cesse de croître. L'agriculture 

est directement liée à la disponibilité de l'eau et nécessite toujours l'irrigation. Bien que les 

ressources mondiales en eau douce soient rares et en quantités limitées, un bon nombre des 

systèmes et de pratiques d'irrigation existants sont très inefficaces, ce qui entraîne un gaspillage 

considérable de l'eau. Les problèmes modernes exigent des solutions modernes, l'apparition du 

paradigme du cloud computing a contribué à structurer de nombreuses solutions existantes pour 

gérer les ressources en eau en agriculture, combinant les derniers développements 

technologiques dans des domaines variés. L'objectif principal de ce travail est de démontrer une 

nouvelle approche de la gestion des ressources en eau dans l'agriculture de précision en 

exploitant un framework de gestion des informations de contexte nommé FIWARE. Le résultat 

est un système complet qui est informé du contexte autour et associe les différents Generic 

Enablers fournis par FIWARE qui sont capables de prendre des décisions autonomes en terme 

d'irrigation (en utilisant le traitement des événements complexes) qui ne sont pas seulement 

basées sur des mesures de capteurs mais également sur l'intégration des différentes sources 

d'information telles que les données de prévisions météorologiques a partir du 

OpenWeatherMap au système pour une gestion optimale des ressources hydrauliques selon les 

conditions météorologiques prévues. 

 

 

 

 

 

 

Mots clés; FIWARE, NGSI, OpenWeatherMap, Orion Context Broker, Gestion de 

l’information contextuelle, irrigation intelligente 
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1.1 Introduction 

The aim of this work is to demonstrate and realize a low-cost and open (from both software 

and hardware side) IoT proof of concept based on WSN (Wireless Sensor Network) to serve 

in environmental monitoring and smart farming, as the world is facing significant challenges 

in terms of food security, water scarcity, growing population and resources demand. A 

particular focus is given to agriculture, considering the specific aspect of irrigation as a use 

case. The complete system developed has proven to be reliable in making autonomous 

decisions upon data collected in the lab, integrated with external context information. 

Preliminary results demonstrate that a high degree of interoperability between the different 

components has been achieved. Moreover, the “open” trait of the system can allow a more 

profound and unrestricted understanding of the recent IoT developments which, in turn, will 

empower more creativity and innovation in the face of current challenges. 

1.2 Background Information 

Recent advanced developments in the field of IT allowed the emergence of what is known 

as cloud computing becoming a trend in the modern business world. Many companies have 

aligned their activities and businesses with the cloud computing trend hosting their activities 

on remotely managed infrastructures. In the sector of IoT, the cloud is used to host the 

various components responsible for processing, filtering, and storing the data. This fast 

adoption of the cloud computing paradigm led to the appearance of many cloud computing 

service providers offering services in the form of Software as a Service (SaaS) (López-

Riquelme, Pavón-Pulido, Navarro-Hellín, Soto-Valles, & Torres-Sánchez, 2017) , Infrastructure 

as a Service (IaaS), and Platform as a Service (PaaS). However, many of these providers use 

a closed-source platform and propose vendor linked solutions which always puts services 

under the provider’s control, decreasing flexibility for customization or further development 

and generating extra costs. Therefore alternative open-source platforms supporting smart 

application commence are taking place, and one example is FIWARE (“Developers 

Catalogue—FIWARE,” n.d.). It is used to serve as a middleware in a smart application 

connecting smart devices and managing the sensed data to monitor the environment 

parameters, identify events and patterns, and take action accordingly. FIWARE features the 
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concept of consuming not only data acquired from sensors but also context data which is 

usually acquired from third party sources in order to energize and surround the collected 

data with more information about the context resulting in more accurate informed decisions. 

 

1.3 Problem Statement  

The problem statement is how to switch from the traditional data management consisting of 

collecting data and storing for analysis to context data management which consists of 

coupling the collected data with the context data of the surrounding environment for more 

context-awareness in a smart irrigation application. The topic requires skills related to 

computer science, such as algorithmic thinking/reasoning, coding, manipulating electronic 

parts, and building circuits. It also needs for basics in the field of network management and 

ICT system engineering to allow a good understanding of the current paradigm shift from 

data management to context information management, which is occurring for the most 

advanced digital platforms. 

1.4 Research Questions 

1) How can a Wireless Sensor Network (WSN) system be implemented for 

Environmental Monitoring purposes using an open-source approach to maintain its 

low cost, but still with a high degree of reliability? 

2) How can we integrate recent IoT developments and technologies to empower Smart 

Agriculture applications with an interoperable approach? 

3) What is the effect of setting an Irrigation Routine based on distributed sensor 

monitoring and external context data compared to the traditional irrigation ways? 

1.5 Objectives  

1.5.1 General objective  

The main target of this work is to demonstrate a novel approach for water resources 

management in precision agriculture exploiting a context information management 

framework. The proof of concept has been carried out by putting together many open-source 

building blocks in a complementary way. By doing so, a complete system capable of taking 
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autonomous decisions concerning different sources of information has been achieved, in 

compliance with the IoT paradigm. 

 

1.5.2 Specific objectives  

The specific objectives addressed during the thesis have been: 

1. Develop the system architecture design; 

2. Select the main hardware components; 

3. Investigate the most widespread IoT communication protocols; 

4. Gain the basics of network management; 

5. Understand the FIWARE framework and select the components to be used; 

6. Integrate external sources of information into the system; 

7. Set up an elaborate event processing routine; 

8. Build a complete prototype to test in the lab. 

 

1.6 Scope of the Study 

The scope of this work focuses on the technological benchmark of one of the most advanced 

frameworks for context information management, namely the FIWARE platform. Because of 

its novelty, only a few attempts to bring this technology into operational has been carried out. 

Several examples have been published by the FIWARE community so far, but none of them 

cover the whole data-lifecycle, from acquisition to action passing through the organization, 

processing, analysis, and sharing. This work aims at demonstrating that a complete solution, 

totally based on open source components, is now within reach and can face relevant use cases 

in an operational environment. Besides, the used approach allowed to address the crucial issues 

of interoperability with external systems/components and of scalability. Finally, the suggested 

solution is meant to be a viable alternative to vendor link products, as it demonstrates 

comparable performances to systems already on the market. 
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2.1 Introduction 

In this chapter, the state of the current context data management approach in IoT is addressed 

through a detailed state of the art review. In the second part of this chapter, the FIWARE 

platform is introduced considering the fundamental building blocks, namely the context 

broker, the NGSI data model, the additional components available and the Docker 

containerized platform philosophy. 

2.2 Context Data Management 

In the beginning, a quick distinction between the meaning of the terms “data” and 

“information” has to be established, as it is usually confused and is of great importance to 

the topic. According to  Guru99 (“Difference between Information and Data,” n.d.) data and 

information are compared against defined parameters to indicate the main points of 

difference that exist (see Tab. 2.1). 

Table 2. 1 Difference from data and information adapted from (“Difference between Information and Data,” 

n.d.) 

Parameters Data Information 

Description  Quantitative, qualitative variables used 

for developing ideas and conclusions. 

It is a set of processed data which is 

meaningful to the context. 

Etymology  The word data originates from Latin, 

Datum meaning “to give something.” 

Originates from French and middle 

English, meaning “act of informing” used 

usually in the domain of education and 

communication. 

Format  Found in letters, numbers, set of 

characters. 

Usually, in the form of inferences from 

the interpreted data. 

Meaning  Meaningless, not related to any specific 

context or purpose. 

Holds the meaning of the interpreted data.  

Feature  Data alone is raw and meaningless, 

represented in a single unit. 

Information is derived by joining a group 

of data giving it a logical meaning.  

Dependence  No dependence on information  Direct dependence on data.  

Measuring unit  In bits and bytes.  In meaningful units like pressure, 

temperature.  
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Support for 

decision making  

Not fit for decision making.  Suitable for decision making as it carries 

a logical meaning.  

Knowledge level  Low-level knowledge.  The second level of knowledge.  

Characteristic  Property of an organization and is not 

available for sale to the public.  

Available for sale to the public.  

Example  10  10 ° Celsius  

Usefulness  Data may or may not be useful to the 

researcher.  

Information is valuable and readily 

available to the researcher for use. 

Both data and information have to be stored into appropriate containers, namely databases, 

which are exploited to get the best out of them, as described in the following. 

2.2.1 Database Management System 

The database management system is defined as a software package responsible for managing 

the database by harmonizing the data, its format, record and file structure defining rules to 

approve and manipulate the data inside the database (Rouse, n.d.). DBMS ensures that the 

data remains accessible and consistently organized. It also establishes an interface between 

the end-user or application and the database itself 4. 

2.2.2 Popular Database Models 

Among the different database models, relational database management system (RBDMS) is 

suitable to most use cases. NoSQL DBMS is well adapted for data structures that are likely 

to evolve. In-memory database management system (IMDBMS) demonstrates faster 

response times and improved performance. Columnar database management system 

(CDBMS) fits well for databases with a large number of related data items. In the cloud-

based data management system, the cloud service provider is responsible for providing and 

maintaining the DBMS 4. Eventually, time-series DBMS is designed to efficiently store and 

query various time series data with high transfer volumes (“Time Series DBMS - DB-Engines 

Encyclopedia,” n.d.). 
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2.2.3 Context Brings Value 

Context is defined as the set of circumstances, conditions that shape the setting related to an 

event. Usually, figures in the form of ready to consume information and used to provide 

clear insights and a surrounding broad view about the conditions of the execution of the 

process (“Context | Definition of context by Lexico,” n.d.). First, context is not just a state; it is 

a component of a process. It is not enough for the system to act appropriately at a specified 

moment: it must act appropriately during the process in which users are engaged. Acting 

appropriately must be described to the process in question, not only the sequence of states 

that structure the process (Coutaz, Crowley, Dobson, & Garlan, 2005). 

For instance, readings of different parameters such as soil moisture or temperature from the 

sensor would reveal the current state of the soil, and in case the sensors report values 

corresponding to “dry” soil, it would indicate the need to trigger irrigation. However, if 

weather forecasts predict a very high possibility of rainfall the process of irrigation should 

not be triggered and should be taken into account in order not to lead to a waste in water 

resources or even flooding the soil with water which could harm the plants. Context seen as 

a whole process not only a state supports and allows the right actions to be taken at the right 

time since the fusion of information from sensors with the context information would allow 

making the “proper” irrigation decisions. In this example, merging the sensed data with the 

weather forecast data exponentials the value and impact of decision making allowing it to 

be more efficient in using water resources by applying rules and algorithms when 

appropriate, like saving water when forecasts indicate rain or threats such as hot arid 

weather, avoiding risks and damages in real-time. The notion of context is already widely 

used in the development of web and mobile application. The so-called “customized or 

personalized services” are used to deliver services or ads according to the user profile, 

location, and device (Coutaz, Crowley, Dobson, & Garlan, 2005).  

2.3 IoT Approaches and Architectures 

Many strategies have already been searched in order to bring context management into IoT 

applications. In order to tailor the state of art analysis to the focus of this work, in this 

section, we will consider only the approaches/architectures that have already been applied 

to smart agriculture pilots. (Chiewchan, Anthony, & Samarasinghe, 2019)5 
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2.3.1 Multiagent System Architectures 

(González-Briones et al., 2018) Designed and developed a multiagent system based on cloud 

computing paradigm tested for making efficient irrigation decisions and optimized use of 

actuators in the system with the help of a WSN system deployed in a rural area field. The 

system is layered, where each of the layers integrates components responsible for multiple 

manipulation and handling of data. The different blocks are depicted in the following Fig 

2.1. 

 

Figure 2. 1 The layered structure of a multiagent IoT architecture 
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In the schematics, the manager agent (MA) is responsible for managing agents in the 

surroundings. Heterogeneous data supervisor agent (HDMA) is responsible for converting 

the communicated data from the sensors into a consistent format as well as persisting them 

in the database for future queries. The irrigation manager agent (IMA) converts the results 

given by the KDVO virtual organization into an action that is triggered by the irrigation 

control device. The UIVO virtual organization is the interface with the system users that 

allows them to get, analyze information, monitor sensor readings, and state. The DRVO is 

a group of agents responsible for collecting sensor field data using DCA (Data capture 

agents). The MAS is designed to handle data for more than one crop type. Consequently, 

each DCA is assigned to capture data from a particular crop type reported by the 

corresponding sensor. In order to store the data in compliance with the database supported 

formats, some converting operations have to be done after capturing the data. The agents of 

the DTVO are responsible for transforming the data from one format to another due to the 

heterogeneity of the captured data (different type of crops) also to the standard data format 

used by MAS. Each agent is assigned to transform data to a specific format besides each 

crop type is assigned with a particular database. In the end, the KDVO represents the brain 

of the system that adds intelligence to the system through supervised and unsupervised 

learning agents. It extracts knowledge and identifies patterns from analyzing the data 

coming from the sensors, as well as predicting their behavior under different circumstances. 

2.3.2 OpenMTC 

It is an open-source cloud IoT platform that implements the specific architecture highlighted 

in Fig. 2.2. It is composed of multiple connected building blocks mainly the applications 

block, the OpenMTC (“OpenMTC,” n.d.) front-end and back-end, which in turn encompass 

the Core Feature and Connectivity components. The latter is responsible for managing 

devices while the former ensures the translation of messages coming from devices heading 

towards the targeted components and vice-versa. The linking component OpenEPC 

represented in between also performs filtering data operations and applies rules. The 

architecture is complete by an interface component with external M2M applications (Ali, 

Shah, Farooq, & Ghani, 2017) and finally, the sensors and actuators block. 
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Figure 2. 2. OpenMTC architecture adapted from (Guth, Breitenbücher, Falkenthal, Leymann, & Reinfurt, 2016) 

2.3.3 SiteWhere 

It is certified open-source IoT platform comprised of multiple building blocks as depicted 

in Fig. 2.3 (Guth, Breitenbücher, Falkenthal, Leymann, & Reinfurt, 2016). SiteWhere (“SiteWhere 

Open Source Internet of Things Platform,” n.d.) is built of the central core element that connects 

applications and encompasses the Tenant Engine, which holds, in turn, a device 

management and communication engine. The latter takes in charge all possible device 

interactions ranging from provisioning of new devices to receiving events and sending 

commands over a set of various protocols. More applications can be linked to the platform 

through available REST APIs, Asset SPIs, and data storage SPIs. 
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Figure 2. 3. SiteWhere approach adapted from (Guth, Breitenbücher, Falkenthal, Leymann, & Reinfurt, 2016) 

2.3.4 AWS IoT 

It is another management IoT cloud platform (“Services et produits de cloud Amazon | AWS,” 

n.d.). It features collecting, storing, and analyzing the data in a reliable and secure manner. 

Fig. 2.4 depicts the architecture of AWS. It gathers six components working together: the 

thing shadow, the message broker, the rules engine, the thing registry, the thing shadows 

service, and service identity. The message broker ensures direct and secure communication 

with the things through the publish-subscribe mechanism for message exchange supported 

by communication protocols such as MQTT enabling more effortless scalability and low 

latency. 
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Figure 2. 4. SiteWhere approach adapted from (Guth, Breitenbücher, Falkenthal, Leymann, & Reinfurt, 2016) 

Messages received by the message broker are then processed and integrated with other AWS 

services thanks to the Rules Engine. The latter is also responsible for matching rules against 

events and invoke actions by sending messages back to the thing whenever a rule matches 

the condition. The Thing Registry is responsible for handling resources associated with each 

thing. The Thing Shadow Service persists information related to the things (i.e., current 

state) in a JSON file format at the AWS cloud. The Security and Identity Service is 

responsible for securing all data transactions inside the AWS platform from sending data to 

the things or the rest of AWS services to granting permissions and access to other 

applications to connect. 

2.4 FIWARE Platform 

FIWARE is an EU initiative within the EU’s Seventh Framework Programme (FP7) initially 

launched in 2011 to deliver an innovative platform using standardized APIs capable of 

creating and delivering cost-effective services offering guarantees about security and high 

QoS (Salhofer, 2018). FIWARE is meant to be the reference implementation for future 

internet targeting various application domains (Martínez, Pastor, Álvarez, & Iborra, 2016). 

FIWARE aims at providing a publicly available standard platform while taking into 

consideration sustainability for the global ecosystem factor (Celesti et al., 2019). FIWARE is 
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labeled as an ideal open-source solution for smart city implementations that are independent 

of any vendor lock-in (Araujo, Mitra, Saguna, & Åhlund, 2019).  

 

Figure 2. 5 Smart Agrifood Application using FIWARE GE. 

The reference architecture of the FIWARE cloud is based on OpenStack, an open-source 

cloud middleware that is mostly used and adopted in the industry. It incorporates what is 

called generic enablers (GEs). They are a set of broad platform functions accessible through 

APIs ensuring data context management, security, advanced middleware interface to 

devices and networks (Celesti et al., 2019). In addition, for individual domains such as energy, 

health, there are unique components or more accurately “domain-specific enablers,” which 

are specifically related to the domain. However, general GEs are organized in this manner:  
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1. Data/Context Management: englobes all the components that afford the process, 

storage, access and analysis of the data; 

2. IoT Services Enablement: these components serve as an interface between the sensor 

networks and the rest of GEs, casting sensor data into proper formats and routing 

data to the rest of GEs; 

3. Advanced Web-based User Interface: these components are responsible for creating 

friendly designed user interfaces to display information such as sensor 

measurements or geographical information on a map; 

4. Security: components used to check identities, authenticate, and enforce security; 

5. Applications/Services and Data Delivery: all components used for generating simple 

applications and dashboards used to visualize data or remote control;  

6. Cloud Hosting: secure provisioning and management of services using cloud 

infrastructures; 

All FIWARE components are run as containers using Docker. The file holding configuration 

for the targeted components to be run is called the docker-compose file and is of a YAML 

format. It is attached to the Appendix. 

2.4.1 Context Broker and NGSI data model 

The Context Broker (CB) Generic Enabler is a simple but a robust REST API responsible 

for operations like establishing queries, updates, subscriptions, and registrations to changes 

of the current context information in a decentralized and highly scalable manner (“Developers 

Catalogue—FIWARE,” n.d.). The implementation of the CB in FIWARE is called Orion, as 

previously mentioned. Orion is a set of open RESTful API based on the NGSI interface that 

sits on top of a MongoDB database used for the storage of data related to the created context 

elements, parameter, and configurations for devices, subscription, and registrations 

(Salhofer, 2018). The context in FIWARE is composed of several sub-blocks called context 

elements (see Fig 2.6). They have a similar representation to the data elements existing in 

many existing programming languages.  
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Figure 2. 6 Context elements in Orion representation adapted from (“Context Management Architecture—

FIWARE Forge Wiki,” 2016) 

Data elements are characterized by a DataType, and data element attributes or properties, 

such as Name, Type, and Value (Salhofer, 2018). Context Elements share the same structure 

except that it goes a little bit further by addressing the data element as an “entity” that is 

uniquely defined by an EntityId and a type giving it a flexible and easy way to map the 

desired entity and attribute value in an ecosystem consisting of a countless number of entities 

(Salhofer, 2018). Entities can be seen as the representation of physical objects existing in our 

environment, for instance, actuators, sensors, or a room (Martínez, Pastor, Álvarez, & Iborra, 

2016). Assuming a room’s temperature and relative humidity parameters are being 

monitored, the room’s entity would consist of context elements such as EntityId “Room-01” 

and a type of “Room” including 2 active attributes temperature and relative humidity 

constantly acquiring sensor readings and are reported in a variable of a type “Number” and 

a value of “10.2”, for instance. The context element (see Fig. 2.7) is then represented in the 

following structure. 

 

Figure 2. 7. Context elements of the room adapted from (“Context Management Architecture—FIWARE Forge 

Wiki,” 2016) 

2.4.2 Multi-Tenancy Headers 

Furthermore, FIWARE uses a unique concept for giving a well-organized hierarchical scope 

for the various application’s data entities using the “Fiware-service” header found in the 

header section of every HTTP request structure. The entities are identified using the “fiware-

service” header, which is included at the time creating the entity. Operations, like querying 

or subscribing to an entity, require the usage of the corresponding scopes. 
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As an example, Fig. 2.8 represents different level scopes, ranging from the high level which 

is the city “Madrid,” that has as subordinates or children, i.e., “Gardens” and “Districts” 

forming the second level of scope. The third level consists of “Parquesur,” “ParqueNorte” 

and “ParqueOeste,” as children of “Gardens,” and so on. Having these different levels of 

scopes makes it easier to map precisely the desired attribute value found in the 

corresponding entity. The multi-tenancy header comes in handy, especially in a large and 

complex implementation that combines many elements and objects. The context broker 

plays the role of the orchestrator of the flow of data. Thanks to a subscription to event 

mechanism, other components or GEs can subscribe to changes in values or “events” of a 

specific entity’s attributes. Events are defined as an identified occurrence or a pattern, that 

usually leads to changes in the context data enabling other components or event-aware GEs 

to manage the information and execute rules or algorithms for decision making or actuation. 

 

Figure 2. 8. Context elements of the room adapted from (“Entity service paths—Fiware-Orion,” n.d.) 

2.4.3 Additional Components 

As previously mentioned, FIWARE comes with a set of components or GEs each one of 

them is responsible for implementing a specific function (see Fig. 2.9). The Orion CB is the 

only compulsory component for a “Powered by FIWARE” solution (“Developers Catalogue—

FIWARE,” n.d.). Other components are optional and deployed based on the need. 
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Figure 2. 9. How to extend a solution by FIWARE adapted from (“Developers Catalogue—FIWARE,” n.d.) 

For this work to demonstrate a prototypal application in the field of smart agriculture using  

FIWARE, the following components have been selected among all. 

2.4.3.1 Core Context Management 

(1) The Orion Context Broker Generic Enabler. 

(2) The Quantum Leap Generic Enabler – responsible for the storage of data into 

CrateDB, which is a time-series database under the NGSIv2 format. 

2.4.3.2 Interface with Iot, Robots And Third-Party Systems 

(3) IoT Ultralight Agent – a bridge between HTTP/MQTT and NGSI. 

(4) IoT Agent for LoRaWAN – a bridge between the LoRaWAN protocol and NGSI.  

2.4.3.3 Context Processing, Analysis, and Visualisation  

(5) The Perseo Generic Enabler – responsible for Complex Event Processing (CEP) 

by reacting to events in real-time using predefined rules stored in a MongoDB 

database. Perseo uses EPL (Event Processing Language) to define rules that will 

trigger actions when the event matches the stored rule. Possible actions supported 

by Perseo are sending an email, tweet, SMS, or an HTTP request.  
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2.5 Docker 

Docker (“Enterprise Container Platform | Docker,” n.d.) is an open-source set of platform-based 

service products that virtualizes the OS instead of hardware. It clusters the machine’s OS 

system kernel, packages code, and dependencies in what is known as a container. The 

software can be quickly built, deployed, shared, and run using containers. A container is 

seen as a software component that wraps up the developed code with all its dependencies 

and libraries into one container capable of running reliably on any other machine 

irrespective of the settings the target machine is implementing. 

 

Figure 2. 10 . Application containerized after Docker. 

 

Figure 2. 11 Virtual machine representation as an abstraction of physical hardware adapted from (Definitive 

Guide to Enterprise Container Platforms”, June 2019) 
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Containers and virtual machines use equal allocation and isolation of resources. However, 

containers use a different implementation as it makes it possible to share the OS kernel with 

the rest of the containers allowing multiple containers to run each as an isolated process (see 

Fig 2.10). Unlikely, a virtual machine (VM) would require distinct resources and its 

Operating System running separately from other VMs in order to run an application, 

resulting in more allocated space and considerable IT infrastructure consumption (see Fig. 

2.11). Containers are running instances of images, which is the configuration or setup of the 

virtual computer. Multiple containers can run on the same machine and share the OS kernel 

with other containers, each running as an isolated process in userspace. In short, the features 

of the primary containers are: 

(1) Using A standard approach for increased portability; 

(2) Lightweight for an increased deployment velocity and decreased infrastructure 

use; 

(3) Secure for the applications as well as containers; 

(4) Sharable with other users through docker hub repository for images (“Docker 

Hub,” n.d.) ; 

As FIWARE comes with many components, several of them are specific to particular 

applications, FIWARE exploits the Docker-compose approach (“Enterprise Container 

Platform | Docker,” n.d.). 

2.6 IoT Wireless Communication Protocols 

Many different wireless communication protocols are nowadays available to IoT 

applications. They mainly differ from power consumption, coverage range, attenuation 

(frequency related), and data throughput. These features make the different protocols most 

suited for specific applications than for others. Tab 2.2 aims at comparing the most popular 

protocols available for IoT. 
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Table 2. 2 Principal IoT wireless communication protocols in comparison. Adapted from (Jawad, Nordin, 

Gharghan, Jawad, & Ismail, 2017) 

Parameters ZigBee Classic BT BLE WiFi GPRS LoRa SigFox 

Standard IEEE 

802.15.4 

IEEE 

802.15.1 

IEEE 

802.15.1 

IEEE802.

11a,b,g,n 

N/A IEEE 

802.15.4

g 

IEEE 

802.15.4g 

Frequency 

band 
868/915 

MHz and 

2.4 GHz 

2.4 GHz 2.4 GHz 2.4 GHz 900–1800 

MHz 

869/915 

MHz 

868/915 

MHz 

Number of 

RF channels 
1, 10, and 

16 

79 40 11 124 10 in 

EU, 8 in 

US 

360 

Channel 

bandwidth 
2 MHz 1 MHz 1 MHz 22 MHz 200 kHz <500 

KHz 

<100 Hz 

Power 

consumption 

in Tx mode 

Low Medium Ultra-low High Medium Low Low 

Data rate 20, 40, 

and 250 

kbps 

1–3 Mbps 1 Mbps 11–54 

and 150 

Mbps 

Up to 170 

kbps 

50 kbps 100 bps 

Communicat

ion range 
100 m 10–50 m 10 m 100 m 1–10 km 5 km 10 km 

Network size 65,000 8 Limited 

by the 

applicatio

n 

32 1000 10,000 

(nodes 

per BS) 

1,000,000 

(nodes per 

BS) 

Security 

capability 
128 bits 

AES 

64 or 128 

bits AES 

64 or 128 

bits AES 

128 bits 

AES 

GEA, MS-

SGSN, 

MS-host 

AES 

128b 

Encrypti

on 

not 

supported 

Network 

Topologies 
P2P, tree, 

star, mesh 

Scatternet Star-bus Point-to-

hub 

Cellular 

system 

Star-of-

stars 

Star 

Application WPANs, 

WSNs, 

and 

Agricultur

e 

WPANs WPANs WLANs AMI, 

demand 

response 

HAN 

Agricult

ure, 

Smart 

grid, 

environ

ment 

control, 

and 

lighting 

control 

Agriculture 

and 

environmen

t, 

automotive, 

buildings, 

and 

consumer 

electronics 
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Limitations short 

communic

ation 

distance  

Short 

communic

ation 

range 

Concise 

communic

ation 

range 

High 

power 

consumpt

ion 

Power 

consumptio

n problem 

The low 

data rate, 

scalabilit

y 

Low data 

rate 

After an in-depth review of the specification of the beforementioned communication 

protocols, we will now focus on the LoRaWAN, which is particularly suited for application 

where low power consumption and full area coverage are crucial, as it is most needed in 

agriculture. 

2.6.1 LoRaWAN 

Fig. 2.12. Shows the flow of data from and to the nodes and gateways in the LoRaWAN 

network protocol. It is deemed to be of Low Power Long-range Wide Area (Sinha, Wei, & 

Hwang, 2017) network protocol explicitly designed to connect constrained devices to the 

internet over long-range wireless connections. LoRaWAN is said to be meeting 

requirements such as end-to-end security encryption of packets, bi-directional 

communication, mobility, and localization services. 

 

Figure 2. 12. The place of LPWAN (LoRa and LoRaWAN) in the IoT wireless connectivity ecosystem as seen in 

2015 according to the LoRa Alliance 
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2.6.2 LoRaWAN Device Classes 

 

Figure 2. 13. Downlink network communication latency as a function of the LoRaWAN device class adapted 

from LoRa Alliance, LoRaWAN What is it?, November, 2015 

 

LoRaWAN identifies three different types of devices, each grouped in a device class (A, B, 

C, as shown in Fig. 2.13.) based on the role or function of your device. LoRaWAN specifies 

that all devices must implement class A while other classes are just extensions to the class 

A devices (“LoRaWAN,” 2019).  

2.6.2.1 Class A Devices 

Lowest power end-device supports bi-directional communications uplinks and downlinks. 

Uplinks are packets transmitted from the sensor or actuator node back to server while 

downlinks are packets sent from the server to the actuator node. Class A devices are suitable 

for applications that are ready to receive downlinks communications from the server shortly 

(1 - 2 seconds) after an uplink transmission (randomly) otherwise it is going to wait until 

the next uplink to be able to receive the downlink (see Fig. 2.14.). 
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Figure 2. 14 Bi-directional communications uplinks and downlinks in LoRaWAN.adapted from (“LoRaWAN,” 

2019) 

2.6.2.2 Class B Devices 

Energy-efficient end-devices inherits the same behavior from Class A devices (random 

receive windows); however, it handles downlink differently. Class B devices use scheduled 

downlink receive time windows by getting a time-synchronized beacon from the gateway, 

allowing the server to know precisely when the end-device is ready and listening for 

downlinks. 

2.6.2.3 Class C devices 

Devices which can afford to continuously listen for incoming packets unless it is 

transmitting something. The cost to afford is energy. Usually, this kind of devices is powered 

with a reliable source of power due to the fact that they are always listening for new packets 

sent from nodes. The C type device configuration is suitable for gateways continually 

listening for new downlinks from other nodes, additionally being able to continually listen 

for new packets reduces the latency communication time, as shown in Fig.2.15. 

 

Figure 2. 15. Uplinks and downlinks management in LoRaWAN class C devices.adapted from (“LoRaWAN,” 

2019) 

2.6.3 LoRaWAN Regional Frequency Specification 

Specifications for the LoRaWAN operational frequency band varies from region to another 

depending on the region’s regulations and requirements. Detailed specifications for the 
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region of Europe and North America are available, while still under the process of definition 

for the rest of the regions. Tab 2.3 resumes the different specifications for Europe and North 

America regions. 

 

  Table 2. 3 LoRaWAN regional specification from LoRa Alliance Technical Committee, LoRaWAN™ 1.0.3 

Specification, July 2018. 
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3.1 Introduction  

In this chapter, the methodologies, and strategies adopted to accomplish a complete IoT 

system for smart irrigation, which exploits a context information management approach 

are reported. After the architecture description, the hardware and software components’ 

settings are explained in detail. 

3.2 Architecture Design  

As explained in the previous chapters, the architecture of the system is composed of 

different operational layers (Core context management, interface with IoT systems) 

which has different GEs communicating with each other using HTTP requests. Orion is 

the CB and the central orchestrator of the data flow in the system.  

 

Figure 3. 1 Architecture design of the IoT prototype accomplished in this work 
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Using the subscription to events, changes in variables and registration of context 

providers mechanisms, Orion holds a strong position as the rest of the system components 

depend on it to get source information. The different components and GEs allocate 

different ports to send and receive notifications and data payloads by initiating HTTP 

GET and POST requests. It also integrates third-party data sources (or what is called 

context providers) such as the weather forecast data to be used as context information. 

3.2.1 Building Blocks 

The building blocks representation of Fig.3.1. Gives an overview of the complete system 

and its components. Different blocks represent different layers that FIWARE uses: 

3.2.1.1 Core Context Management : 

(1) The Orion Context Broker Generic Enabler. 

(2) The Quantum Leap Generic Enabler – responsible for the storage of data into 

CrateDB, which is a time-series database under the NGSIv2 format and exposes 

port 8868 for information exchange. 

3.2.1.2 Interface with Iot, Robots, and Third-Party Systems:  

(1) IoT Agent for Ultralight – a bridge between HTTP/MQTT and NGSI responsible 

for parsing the received payload from the actuator node figuring in UltraLight 

syntax to NGSI format compatible with Orion. 

(2) IoT Agent for LoRaWAN – a bridge between the LoRaWAN protocol and NGSI 

responsible for parsing the received payload from the gateway in LoRa format 

to NGSI format compatible with Orion. 

MQTT is the communication protocol used to carry the payload from the devices to the 

IoT Agent. It is open-source and lightweight, suitable for devices with limited resources 

(low power devices). The MQTT Broker plays nearly the same role as Orion CB in 

orchestrating the incoming and upcoming information. It implements a 

subscribe/publish model to exclusive and unique topic addresses structured in a manner 

allowing devices and the agents to communicate with each other by connecting, 

subscribing and publishing messages without the need to have direct communication 

(“MQTT main page,” 2018). Multiple devices can connect to the same topic that they are 
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interested in and choose to publish messages on that topic to whoever is subscribed and 

listening for updated messages. Devices that are posting messages and agents fetching 

them on the same topic do not necessarily need to know each other as long as they are 

publishing/subscribing to the same topic making it more flexible and more accessible 

than if both of them knew each other and had direct communication. Some critical 

differences between MQTT broker and Direct communication with devices are 

highlighted in Tab 3.1 (from (FIWARE 203, 2018/2019)) 

Table 3. 1 Comparison between Direct Communication and MQTT brokering. Adapted from (FIWARE 203, 

2018/2019) 

 

 
 

Direct communication between the IoT Agent and 

device via HTTP. 

IoT Agent communicates with IoT devices 

indirectly via an MQTT Broker 

Request-Response mechanism Publish-Subscribe mechanism 

Devices must always be ready to receive messages Devices can subscribe to the topic at any time to 

receive messages 

High Power demands Low Power demands 

External Data existing in JSON format can be integrated into Orion by parsing it into 

NGSI format using the NGSI Parser component and using the NGSI proxy would allow 
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Orion to register it as a context information provider making the query and update 

context operations an easy task using the port 3000. 

3.2.1.3 Context Processing, Analysis, and Visualization 

(1) Perseo is responsible for Complex Event Processing CEP by reacting to events 

in real-time using predefined rules by the user. It exposes port 9090 to 

communicate with Orion for update or query context operations. 

(2) Grafana is responsible for the creation of dashboards, visualization, and plot of 

different sensed parameters. It integrates CrateDB to retrieve historical data and 

manipulate it to the user need.  

3.2.2 Deployment View  

In order to provide more insights and understanding of the system, a deployment view 

model have been designed, as well. It explains the different building blocks, components, 

and the link between them, as shown in Fig. 3.2. 

 

Figure 3. 2 Deployment view of the IoT prototype. 
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This architecture consists of several building blocks: 

1) a sensor node deployed locally in the field to acquire environmental data; 

2) a gateway to communicate to the platform through the LoRaWAN protocol; 

3) an actuator node that operates a water pump upon context evolution; 

4) a first remote virtual machine which is fed by the gateway and collects and shares 

the sensed data; 

5) a second virtual machine which provides event processing and gives a business 

representation of information to end-users through a Grafana dashboard; 

6) Third remote virtual machine which allows enriching the context information with 

the weather forecast. 

3.3 Components setup 

3.3.1 Hardware 

The choice for the hardware used in our application is of great importance, and the 

selection of which board, communication protocol to use is also linked to the targeted 

implementation, which is smart agriculture. Our choice of the targeted board comes 

considering the environment the hardware is going to operate in (standalone mode) and 

the various climatic or environmental conditions that it is going to face. Efficiency, 

durability, and reliability are major factors influencing the node’s performance and in 

turn, the whole system’s performance and response time to events. Therefore, we have 

chosen an industrial class device known as Pycom. We have based our choice on multiple 

criteria of performance, openness, and cost. Pycom LoPy 4 represents the right balance 

between performance, power, price, and supported networking protocols. It is a 

MicroPython ready development board supporting four different network protocols 

(LoRa, Sigfox, WiFi, Bluetooth) in one small board, recognized as enterprise-grade IoT 

device ready to be integrated into a smart application. The specs of this microcontroller 

board are listed in Tab 3.2. 
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Tab 3.2 Specification of the Pycom LoPy4 development boar adapted from Pycom, LoPy4 Datasheet 

Pycom LoPy4 - Technical Characteristics 

Processing -Espressif ESP32 chipset 

- Dual processor + WiFi radio System on Chip. 

Power – Input: 3.3V – 5.5V 

3v3 output capable of providing up to 400mA 

– WiFi: 12mA in active mode, 5uA in standby 

– LoRa: 15mA in active mode, 1-uA in standby 

Memory - RAM: 4MB  

- External flash 8MB 

- Hardware floating-point acceleration  

- Python multi-threading 

Security SSL/TLS support  

- WPA Enterprise security  

Supported Networks LoRa, Sigfox, WiFi, Bluetooth 

Interfaces 2 x UART,  SPI, 2 x I2C, 

 I2S, micro SD card - Analog channels: 8x12 bit ADCs - Timers: 4x16 bit 

with PWM and input capture - GPIO: Up to 24 

LoRa operating, range 

Frequencies 

- Node range: Up to 40km - Nano-Gateway: Up to 22km - Nano-Gateway 

Capacity: Up to 100 nodes 

- 868 MHz (Europe) at +14dBm maximum - 915 MHz (North and South 

America, Australia and New Zealand) at +20dBm maximum - 433 MHz 

(Europe) at +10dBm maximum 

Size Size: 55mm x 20mm x 3.5mm weight : 7 g 

Due to the high flexibility of the chosen platform, we can program the same development 

board model, namely a LoPy4 (see figure 3.3), either to act as a sensor node, or an 

actuator node or eventually a gateway.  
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Figure 3. 3  Pycom LoPy4. 

 

Figure 3. 4 Microcontroller block diagram adapted from Pycom, LoPy4 Datasheet 

3.3.1.1 Sensor node 

In the proposed prototype, two main parameters will be sensed during the whole 

monitoring process: temperature and soil moisture. For demonstrative purposes, we have 

judged using sensors which are capable of measuring temperature, and soil moisture are 
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suitable for our case. However, it is possible to integrate different types of sensors that 

could be implemented depending on the user-specific application. The choice of the 

sensor was Adafruit STEMMA Soil Sensor - I2C Capacitive Moisture Sensor (Adafruit 

Industries, n.d.), which fits perfectly as a low-cost sensor with acceptable accuracy. It can 

be calibrated by means of a gravimetric procedure to get a reliable soil moisture read-out. 

The sensor is of a capacitive type and uses a single probe that fits inside the soil to 

measure both soil moisture and temperature. The sensor can be interfaced with any 

microcontroller thanks to the I2C ready interface. The latter allows for a secure 

connection to the pins of the microcontroller expansion board without the need for any 

soldering as can be seen in Fig. 3.5. 

 

Figure 3. 5 Connection of the soil moisture sensor to the microcontroller expansion board via the I2C bus. 

The code that runs inside the board in a closed-loop is attached to the Appendix with the 

corresponding comments. It mainly establishes a connection to the LoRaWAN gateway 

using the Device EUI, Application Session Key, and Network Session Key generated by 

the LoRaServer during the device registration. After successful connection to the 

network. It ensures acquiring the measurements from the sensor, calibrates the readings, 

opens a connection with the network, and sends the packet. 

3.3.1.2 Actuator node 

The actuator node ensures the successful establishment of bi-directional communication 

with the gateway to start receiving commands from the gateway. The actuator node is 

also responsible for reporting useful data like the command execution results, the state of 
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the actuator, and other related information. The actuator node integrates a low-cost DC 

pump used to pump water to simulate the process of irrigation. It is linked to a relay board 

that works as a power manager between the microcontroller and the pump since the 

microcontroller cannot supply the required energy by the pump because using low output 

current and voltage and are not suitable for operating the pump. The pump comes with 

the specifications of Tab 3.2 (from (Coutaz, Crowley, Dobson, & Garlan, 2005)). The 

configuration code for the actuator node is attached to the Appendix with the 

corresponding comments. 

Table 3. 2 Low-cost water pump technical details. 

 

 

          

 

3.3.1.3  LoRaWAN gateway 

The programming script for the LoRaWAN gateway has directly been taken from the 

examples published on the Pycom website (“LoRaWAN Nano-Gateway,” n.d.)). We believe 

that this piece of code is particularly suited for our purposes, as it implements a 

LoRaWAN packet forwarder that was easy to couple with the LoRaserver network 

manager (more details will follow). Moreover, the setting of a more complex LoRaWAN 

access point goes out of the scope of this work. 

3.3.2 Energy harvesting and management 

In the proposed prototypal system, we are dealing with two types of nodes, end nodes, 

and gateway. The end nodes (sensor node and actuator node) can be powered by a 

Specifications Value 

Power supply 6~12V DC,65mA-500mA 

Interface DC 5.5-2.1 

Pumping head  0-200cm 

Capacity  0~550L/H 

Power range  4~5W 

Dimensions 45x43x30mm(1.77x1.69x1.18") 

Weight  300g 

Cable length 1m (39.37") 
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rechargeable battery on a standalone mode. The nodes use a small solar panel to recharge 

the battery on sunny days for increased autonomy and to avoid yearly battery 

replacements. Sensor node’s primary function is to get measurements from the sensors, 

encrypt them and transmit them to the gateway or sink node. The process of transmission 

using the LoRaWAN radiofrequency protocol is energy-consuming. Therefore, nodes are 

time-scheduled by the user to wake up, collect, and send measurements. When nodes are 

inactive (not sending measurements), they automatically go on deep sleep mode (“Deep 

Sleep API,” n.d.). Energy consumption in deep sleep mode is deficient with the purpose 

of preserving the energy of the battery. Deep sleep mode is interrupted by events or 

triggers that are set by the user (wake up every 10 minutes and transmit the current value 

of temperature). The actuator node is responsible for receiving and triggering commands 

pushed from the context processing layer holding the action to be launched (more details 

will follow in the chapter). In the proposed prototype and for demonstration purposes the 

actuator node is also powered by a battery. However, in a real implementation that 

requires the use of a big engine or pump it would require constant high current and 

voltage, which is usually acquired directly from the grid or using a reliable source of 

power allowing, in turn, the actuator and the node to operate reliably. The gateway is the 

most energy-consuming device. This is due to the fact that the gateway is supposed to be 

connected to internet nearly the whole time in order to upload the readings from the 

sensor nodes to the cloud for processing, storage, and visualization (or even receive 

commands back from the unit responsible for triggering actions). The level of energy 

consumption depends mainly on the way the gateway uses to secure internet connectivity. 

For instance, if the gateway uses WiFi to connect to the internet, then power consumption 

is going to be higher compared to using GPRS (Grimm, 2013). Depending on which way 

the gateway uses to secure internet connectivity varies the level of energy consumption. 

However, it would not be appropriate to operate the gateway using a battery as the 

gateway is continuously active and constantly listening for incoming packets from other 

nodes ready to forward them. That is why the gateway should be plugged to a reliable 

source of energy. Having said so, various approaches and algorithms for efficient energy 

use, harvest, and saving exist in the literature and can be easily integrated into the nodes 

as they can be programmed in python, benefiting of the substantial energy savings. 
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3.3.3 LoRaServer Network manager 

LoRaServer is the network manager that includes a set of applications providing 

mechanisms for managing registered gateways on the LoRa network, devices, and their 

associated applications. It also manages the data traffic between the gateways receiving 

packets from the nodes and the rest of the applications listening for new packets (IoT 

Agent in the present case). Possible integration with the FIWARE platform is sketched 

in Fig. 3.6 (“Description- LoRaWAN IoT Agent,” n.d.). 

 

Figure 3. 6 Main network components of the proposed prototype adapted from (“Description- LoRaWAN 

IoT Agent,” n.d.) 

LoRaServer is open-source and comes with a Web UI, the LoRa App Server component, 

allowing easy integration of devices and gateways configuration profiles, associating 

devices to applications, and monitoring live data. The network management can also be 

addressed using programmatic interfaces implemented in gRPC, and JSON REST API 

(“Project—LoRa Server, open-source LoRaWAN network-server,” n.d.) LoRaServer is built 

using different components illustrated in Fig. 3.7. 
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Figure 3. 7 LoRaServer architecture adapted from (“Architecture—LoRa Server, open-source LoRaWAN 

network-server,” n.d.). 

3.3.3.1 LoRa gateways 

The gateways receive the data from the end node devices and forward it straight to the 

LoRaserver using an implementation of the packet-forwarder software which also plays 

the role of an interface with the Lora hardware on the gateway. 

3.3.3.2 LoRa Gateway Bridge 

This leading role of the component is to communicate with the gateway and interfaces 

the UDP protocol used by the packet-forwarder and switch to messages over MQTT 

protocol for several reasons mentioned below. Debugging using MQTT is smooth 

compared to while using UDP. Sending a downlink becomes much more comfortable as 

it only requires knowledge of the target MQTT topic of the gateway and publishes the 

message. MQTT broker will be responsible then for forwarding it to the LoRa Gateway 

Bridge associated with the gateway all under secured environment and connections using 

the MQTT over TLS. 
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3.3.3.3 LoRaServer 

LoRa Server integrates the LoRaWAN network server component capable of managing 

the state of the network. By knowing which devices are already active on the network 

and others that have yet joined by handling join-requests from devices willing to join. 

Gateways often receive identical data pieces from devices and are still forwarded to the 

application server. However, LoRaServer is going to run some filtering and optimization 

operations on data when they reach the LoRaserver such as deduplication it and removing 

any data items that reproduced. For downlinks sent from the app server back to gateways, 

the LoRaServer uses a queue mechanism to keep data until the targeted gateway is finally 

reachable. 

3.3.3.4 LoRa Geo Server 

This component is optional and provides geolocation services to know the location of each device 

mapped on a map. 

3.3.3.5 LoRa App Server 

The LoRa App server disposes of a web UI and a set of APIs for handling devices, gateways, 

applications, networks, and users. 

3.3.3.6 Application 

The Application, in this case, represents the FIWARE platform that will make use of the 

data by processing, storing, and deducting actions from it. The first component that is 

part of FIWARE to interact within this process is the IoT, which we will treat in detail in 

the next parts. 

3.3.4 Orchestrator: Orion Context Broker 

Orion (“Home—Fiware-Orion,” n.d.) Context Broker is a C++ implementation of NGSIv2 

REST API, designed to manage context information and its availability. It is an NGSIv2 

server implementation that is in charge of managing the complete lifecycle and handling 

the traffic of the context information through the CRUD operations as well as the 

subscription and registration mechanisms. In order for a system to be certified as 

“Powered by FIWARE,” it requires only one component to be deployed, which is Orion. 
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The other components are linked to Orion and depend on it to retrieve the context 

information. Entities carrying geospatial properties are provisioned in Orion and enables 

the resolution of geographical queries. It supports two representation formats. 

3.3.4.1 Spatial location format 

It is a lightweight representation designed to allow quick and easy integration of the 

properties to the existing entities. It supports underlying geometries representations such 

as point, line, box, and polygon, and it is not suitable for complex positions 

representations. Context attributes holding the location coordinates and encoded with the 

Simple Location Format are entitled to be consistent with the following syntax:  

- considered value for the type attribute must conform to one of (geo: point, geo: line, 

geo: box, geo: polygon); 

- all attributes values holding coordinates must be represented in a list and should be 

defined according to WGS84 Lat Long and EPSG:4326 coordinate reference system 

(“WGS 84: EPSG Projection—Spatial Reference,” 2007). 

3.3.4.2 GeoJSON format 

GeoJSON is a geospatial data interchange format (DIF) using the JavaScript Object 

Notation (JSON). It comes with high power and flexibility for representing points of 

altitude and even more complex geospatial shapes such as multiple geometries. Context 

attributes holding the location coordinates and encoded with the GeoJSON Format are 

entitled to be consistent with the following syntax:  

- considered value for the type attribute must conform to GeoJSOM, and the attribute’s 

value must be a valid GeoJSON object; 

- in GeoJSON the value of longitude comes first and is followed by the latitude. 

3.3.4.3 Geographical Queries 

Geographical queries are used to filter, and map entities that match a particular set of 

parameters. Geographical queries are specified by using the following parameters: 

“georel” is intended to specify a spatial relationship (a predicate) between matching 

entities and a reference shape (geometry). It is composed of a token list separated by ';.' 
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The first token is the relationship name, the rest of the tokens (if any) are modifiers which 

provide more information about the relationship. The following values are recognized: 

1) georel=near. This means that the entity is located in a certain threshold range 

distance to the reference geometry and takes: 

(a) maxDistance. Expresses, the maximum distance to which the entity should 

be located. Unit meters.  

(b) minDistance. Expresses, the minimum distance to which the entity should be 

located. Unit meters.  

2) georel=intersects. Requires the entities to intersect with the reference geometry. 

3) georel=equals. The matching entities should have the same position as the reference 

geometry.  

The reference geometry used can be defined using the following supported geometries: 

1) geometry=point. 

2) geometry=line. 

3) geometry=polygon. 

4) geometry=box. 

3.3.4.4 Subscriptions 

Orion Context Broker has a powerful feature which allows other components to subscribe 

to context information, in other words keeping track of changes and updates occurring in 

the system to the different entities’ attributes without the need to continuously repeat 

query requests. Orion takes in charge notifying the subscribers whenever a change to the 

specified attribute value occurs, instantly and automatically by sending the latest and 

recent value change to the components listening for updates. This mechanism goes in line 

with the smart application’s requirements to ensure consistent and coordinated 

communication between all the components of the smart solution. An example of a 

subscription is attached to the Appendix: The POST HTTP request is sent to the Orion 

on the port 1026 followed by the subscriptions’ endpoint, the FIWARE-service and 

service headers are specified. The “entities” and “attrs” subfields describe the set of 

targeted entities that holds the set of attributes to be sent to the subscriber. However, 
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“attrs” subfield of “condition” are responsible for firing the notification to the subscriber 

component in case the specified attribute value changed (“temperatureDegree” in this 

case). The rest of attributes under the “attrs” subfield do not trigger any notification; they 

are only attached to the notification sent carrying the attributes’ values. If no attribute is 

specified under the “condition” field, then Orion assumes that this notification should be 

triggered if at least one of the attributes belonging to the entity change, as he considers 

every attribute value change as a notification trigger. It is also possible to tell Orion to 

only fire a notification if the value of temperature is somewhere greater than 10, for 

instance. This is possible through using the “expression” field and including "q": 

"temperature>10" as an attribute. The URL where the component listens for incoming 

notifications from Orion is specified in the “url” subfield. In this case, the target 

component is Perseo-fe exposing the port 9090. The throttling element defines the 

frequency of firing the notification, it is the time between two successful notifications, 

expressed in seconds, for instance, if the value of throttling is 5 this means that the time 

between the first notification sent and the second one to be sent has to be 5 seconds even 

if a value change is reported during the waiting time it will be ignored and the notification 

will not be sent. It serves to define a notification arrival time for better coordination. All 

established subscriptions in our system are attached to the Appendix. 

3.3.4.5 Registration Context Availability Management 

Context availability management is interested in the source or providers of the entities 

and attributes. Orion implements a registration mechanism capable of integrating the 

various NGSI sources of information through establishing a registration allowing Orion 

to run query and updates to the entities whenever requested by the other components. 

Orion does not persist in any of the information provided by the source. However, Orion 

knows what is in the source (entities and attributes) and how to get them (the URL of the 

source). When a component requests certain entity from Orion, he fetches the DB for that 

specific entity. If it is not stored in the DB, like an entity provided by an external provider, 

Orion queries and fetches the entity for the requested value through the provided URL. 
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3.4 IoT Agents: LoRaWAN & Ultralight 

IoT Agent GE is a component that serves as an interface between the IoT devices and 

gateways, ensuring secure connections, authorizing and authenticating the deployed 

devices for a smart application regarding Orion CB which manages their data, 

configuration and so on. IoT Agent is capable of “translating” from the device’s native 

protocol carrying the data to be compatible with Orion NGSI data model. There are 

various IoT agents who are already implemented or under development for various IoT 

communication protocols. Among them, we find: 

1) IoTAgent-JSON –an interface between the MQTT and HTTP protocols (with a 

JSON payload) and NGSI 

2) IoTAgent-LWM2M - link Lightweight M2M protocol and NGSI 

3) IoTAgent-UL – a link between HTTP/MQTT messaging protocol (with an 

UltraLight2.0 payload) and NGSI 

4) IoTagent-LoRaWAN – a link between LoRaWAN protocol and NGSI 

As previously defined the IoT agent stands in the middle between the FIWARE GEs at 

his back and the IoT devices and gateways in front of it constantly sending sensed data 

from the sensors, and after being processed it will be receiving commands or actions (if 

any) back through the gateway to the actuator. We distinguish two ways of data traffics 

in this case, measurements coming from the IoT devices passing by the Agent up to the 

Orion CB, which we call North Bound Traffic. Commands sent from CEP component 

to Orion are HTTP requests generated by the latter passing through the Agent towards 

the actuator node are what is called South Bound Traffic. 

An IoT agent is supposed to handle both north and south bounds data traffic. However, 

after running tests and using the LoRaWAN IoT Agent solely, the operation of receiving 

data measurements from sensors and forwarding them to Orion was successful. The 

opposite path operation was not due to some critical errors that were encountered and 

failed to send back commands to actuators. The encountered problem was reported to 

the FIWARE community and due to limited time and support, we have foreseen the use 

of another way to send actuations, which is through integrating the UL IoT Agent 

specifically for South Bound traffic and LoRaWAN IoT agent for North Bound traffic 
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which is acquiring sensor measurements and forwarding them to Orion in the appropriate 

format. Each IoT agent disposes of a unique port for the north and southbound traffic as 

explained in the Activity Diagram below (see Fig. 3.8.). The Activity Diagram 

represents the southbound traffic (commands) coming from the context processing layer 

to order the execution of an action, which is switching on the pump for the irrigation 

process. 

3.4.1 South Bound Traffic (Commands) :  

 

Figure 3. 8. Activity Diagram for the Ultralight IoT Agent - South Bound Traffic (Actuation). 
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The southbound traffic involves three components and an actuator interacting with each 

other (Perseo CEP, Orion CB, IoT Agent, and the pump) following these steps: 

1) Perseo is a CEP GE and is responsible for initiating actions (i.e., switching on the 

pump) based on the triggering events (i.e., dry soil, very hot and sunny day.). Request 

to turn on the pump was sent to Orion through the exposed port and using HTTP 

PATCH request. 

2) Orion receives the UpdateContext request from Perseo holding relevant information 

about the targeted entity and the command attribute’s value on or off. Orion maps 

and checks the designated entity. 

3) After mapping the entity and attribute, Orion Updates the attribute’s value to on or 

off. 

4) Orion forwards an HTTP request to the Agent on the corresponding port with the 

required information such as the command attribute value and the entity name and 

type. 

5) The UltraLight IoT Agent receives the request and queries the provisioned devices 

and services database. When the entity id type, FIWARE-service, and service-path 

headers and attribute match, the Agent converts the message from NGSI format to 

the matching UL syntax. 

6) UL Agent sends the command in UL syntax to the actuator node and updates the 

command status attribute value to “pending” and pushes it back to Orion. 

7) The actuator node receives the command and executes it. 

8) The actuator node notifies the agent about the result of execution, successful, not 

executed. 

9) The Agent updates back Orion about the result of the command execution. 

10) Orion notifies Perseo about the change for further actions. 

Requests between Format used 

Perseo and Orion CB NGSI 

Orion CB and UL IoT Agent NGSI 

IoT Agent and IoT Device UL2.0 syntax 
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3.4.2 North Bound Traffic (Measurement) 

The North Bound Traffic represents the data traffic coming from sensor readings passing 

through LoRaWAN IoT Agent reaching Orion CB. IoT Agent is reaching Orion CB.The 

Activity Diagram of Fig 3.9. Describes the course of the data from the device until it 

reaches Orion. 

 

Figure 3. 9 Activity Diagram for the LoRaWAN IoT Agent - North Bound Traffic (Measurement). 
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The steps are explained as follows: 

1) The device sensed the current value of temperature and soil moisture from the sensor, 

wrapped up in a packet and sent it straight to the gateway which, in turns, forwards 

it to the LoRaServer for decryption, filtering. The packet is then sent to the Agent. 

2) Once the LoRaWAN IoT Agent, receives the packet, it queries the list of the 

provisioned devices in the database and searches for the targeted device.  

3) After finding the targeted device and its entity, the Agent converts the data to be 

NGSI compliant and casts it into NGSI, it then maps the attribute and updates its 

value with the acquired readings from the sensor. 

4) The last task is to send the payload to Orion through HTTP.  

5) Orion acknowledges the reception of the payload and notifies all subscribed 

components about the changes of this specific entity’s attribute’s value. 

Requests between Format used 

IoT Agent and IoT Device LoRaWAN 

IoT Agent and CB NGSI 

 

3.4.3 Device Provisioning 

Device provisioning or device registration is the first step to be done for the device to be 

known and saved in the device collection inside the database. Device provisioning is 

done through posting a structured HTTP request containing the relevant information 

about the device such as the attribute types, whether commands or ordinary. Each device 

will be assigned to an entity with a unique ID and type under the FIWARE-service and 

service-path headers. All the provisioning requests are made to the IoT Agent (UL IoT 

Agent for actuators in the current case). Responsible for managing the devices. It is 

possible to run the CRUD operations for managing devices using HTTP requests sent 

directly to the corresponding IoT Agent using the correct headers, entity id, and type. 
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3.4.4 Provisioning a service group 

The first thing to do is to provision a service group. Defining a service group is required 

for UL IoT Agent since it holds information that is crucial for the authentication, the 

end-point URL where Orion lies. A service group also integrates all devices sending the 

same type of measurements. For instance, assume there are many nodes deployed on 

field sensing temperature: all of the devices can be provisioned once in a service group 

instead of provisioning each device on its own. The method to provision a service group 

is explained as follows and the code is attached to the appendices: 

This request represents a HTTP POST request using cURL for provisioning a service 

group of devices. The post request is sent to the IoT agent on the 

'http://localhost:4041/iot/services' end-point through port 4041 specific to the UL IoT 

Agent. Lines from three to five represent headers: 'Content-Type: application/json' is 

required for post requests and the FIWARE-service and service path headers are specific 

to the current application. In order to declare services, an API-key is specified for the 

devices to include it in the authentication process while sending or receiving something. 

For instance, devices will use the following URL to make any post or get requests, 

including both the device ID, which is specified in the provisioning of the device step. 

1. http://iot-agent:7896/iot/d?i=<device_id>&k=TemperatureNodeServiceGroup 

cbroker represents the URL where Orion is reachable for receiving the request, the entity 

type is required, and its value is Thing by default used to map the correct entity. The 

resource "/IoT/d" means that this specific endpoint will be used to locate the provisioned 

devices under the specific service group. 

3.4.5 Provisioning a sensor 

The request used to provision a sensor is attached to the appendices and explained as the 

following: 

It is a POST request sent to LoRaWAN IoT Agent through port 4061. In this case we 

are not provisioning a service group since we are only dealing with one sensor node. 

Device Id is mandatory as well as the entity linked to the device its type and ID. For 
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attributes we distinguish three types of attributes used to carry information and are the 

following: 

1) Active Attributes: continuous readings from the device.  

2) Lazy Attributes: sent only upon request by the Agent. 

3) Static Attributes: represent static data about the device. 

In the sensor node, only the active attribute type is used to acquire readings from the 

device. Each attribute is characterized by a name, type, and an object_id. Orion uses the 

name and type to identify the attribute in the corresponding entity while object_id is used 

to match the attribute ID of the payload in LoRaWAN with the attribute id of the 

registered device and acquire the exact value. The type must correspond to the supported 

data types described in FIWARE data models. Internal attributes are specific to using 

the LoRaWAN IoT Agent and define the authentication parameters required to access 

the LoRaServer (where devices are already registered and configured) such as the host 

address username and password as well as the Device EUI. Device EUI and application 

key are generated inside the LoRaServer when the device is added, both of them are 

unique to the device and are mandatory to decode the encoded packet coming from the 

sensor node. Data_model attribute specifies the data model used by the device to post 

new values; the value application server means the decoding is done by the LoRaServer, 

which is the app server.  

3.4.6  Provisioning an actuator 

Provisioning the actuator is not different from the provisioning of the sensor; in fact, the 

structure is kept the same. What changes is that we define an array “command.” Inside 

it lies the list of commands that are registered and can be triggered. Each of them has a 

name, a type, and a value. The endpoint for provisioning devices is “iot/devices” using 

the port 4041 specifically for UL IoT Agent and the transport protocol is set to MQTT. 

Provisioning single devices are done using the post request attached to the appendices: 

3.5 Data Storage 

MongoDB is an open-source, cross-platform database management system listed as one 

NoSQL database that supports many forms of data. MongoDB is document-oriented, 
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which means it uses collections and documents instead of tables and rows. It is widely 

used in applications that require big data processing and management (Rouse, 2018). 

MongoDB is integrated by many components to hold relevant data used during their 

activity. The database is queried and updated with new values by components. 

MongoDB interacts with other components through port 27017. 

3.5.1 Identified Generic Enablers that use MongoDB 

3.5.1.1 Orion 

Orion Context Broker stores four collections in the database, described in the following 

subsections: 

(a) Entities Collection: this collection stores all the relevant data about entities 

in the NGSI format; each document in the collection corresponds to an entity. 

(b)  Registrations Collection: holds information about established registrations 

of context providers such as the registered attributes, ID, and the URL of the 

providing application. 

(c)  Subscriptions Collection: this collection holds established subscriptions to 

Orion about changes in attributes values. 

3.5.1.2 Perseo 

(a) Rules: define the “how” to react to events are stored in Rules collection. 

These rules are defined by users and contain relevant information about the 

targeted device entity, the set of defined actions as a response to events. 

(b)  Executions: results of command executions are stored in this collection with 

all the relevant information and details such as a timestamp of the execution 

and the related entity. 

(c)  Indexes: indexes guarantee that every execution and rule is identified by its 

name, service, and sub-services. 

3.5.1.3 QuantumLeap and CrateDB : 

The collection holds information about the provisioned devices and service groups such 

as device URL, Apikeys, and device entity. QuantumLeap GE (“QuantumLeap—
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QuantumLeap,” n.d.)  is the component responsible for persisting data in the NGSI V2 

data format inside a time-series database through a set of APIs. QuantumLeap integrates 

CrateDB (“CrateDB: Simply Scalable SQL Database for IoT & Industrial Time Series,” n.d.)  

for storing time-series data values from the readings for the following reasons: 

(1)  Databases running in a containerized environment are easily scalable. 

(2)  Supports Geospatial queries. 

(3)  Implements a SQL-Like query language. 

(4)  Integrates visualization tool like Grafana. 

QL communicates with Orion CB using HTTP requests. QL is interested in acquiring 

the latest reading and keeps track of it. In order to do so, it needs to be aware of every 

change in the target attribute value and the time it occurred, it needs to be notified about 

the change and the corresponding value, that is where Orion kicks in. Knowing about 

the value change becomes much easier thanks to the subscription mechanism that Orion 

implements (that is the step one (1) in Fig. 3.10.). QL is going to subscribe to individual 

entity’s attributes (i.e., temperature change) and provides a URL to Orion for receiving 

notifications about value changes. Whenever the Agent receives any updates from the 

nodes about an entity’s attribute value, it immediately forwards it to Orion, that is step 

two (2). Orion, in turn, will check for any subscribers to the entity in interest and 

forwards a notification carrying the right information that QL needs. After receiving the 

notification, QL is going to run some operations or preprocessing on the received 

payload. It disposes of submodules that serve for this purpose. For instance, the reporter 

is going to parse and validate the notification supported by the Geocoder, which in turn 

will contribute by harmonizing the location representation of the different entities. The 

Reporter sends the preprocessed payload afterward to the Translator in charge of storing 

the data in the adapted time-series database cluster. When QL is asked to map an absolute 

value, the Translator assists in querying the database and forwarding the desired value. 

The user is able to query historical with the help of the existing APIs, step four (4). 

Grafana gives the user the possibility to visualize and plot charts, create dashboards, 

manipulate the data according to the user need step five (5). 
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Figure 3. 10. Usage of QuantumLeap adapted from (“QuantumLeap—QuantumLeap,” n.d.) 

 

3.6 Data Visualization: Grafana 

Grafana is a powerful open-source visualization and analytics tool deployed in many 

domains such as home automation, industrial as well as weather. It is generally used to 

visualize and analyze time-series data (“Docs Home | Grafana Documentation,” n.d.). In 

order to start visualizing the persisted data in CrateDB Grafana requires to configure a 

data source, the place where data lies. Grafana is running locally on the virtual machine 

and is possible to access it from the browser using the following URL: 

http://localhost:3000 and then selecting the Postgres Data source and filling the 

following information related to the database (see Fig 3.11): 

http://localhost:3000/
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Figure 3. 11. Grafana data source setup tab. 

(1) Name: a name is required then tick default. 

(2) Host: the URL where CrateDB is located, usually crate:5432 when Grafana is 

deployed using the docker-compose file. 

(3)  Database: the database schema names are made using mt prefix followed by the 

multi-tenancy header specified previously (fiware-service). For instance, 

mtagriculture is going to be the database schema. 

(4) The IoT agent is using the same schema to forward the IoT data under the 

agriculture service header. 

(5) User: takes the name and password of user-configured when installing Grafana. 

(6) SSL Mode: disable. 

By clicking on the + sign of Fig 3.12. It is possible to create and personalize a new 

dashboard for visualizing the data. 
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Figure 3. 12. Adding a new dashboard for data visualization in Grafana. 

After setting the data source properly, it is time to start using available visualization 

widgets. Mapping the table and selecting the value of the temperature attribute on the Y-

axis while the corresponding timestamp time_index on the X-axis all this using the query 

builder (see Fig. 3.13.). Note that the table names are derived from adding the “et” prefix 

followed by the entity’s type “tempHumid” in the current case.   

 

Figure 3. 13 Query builder of Grafana. 

The following plot in Fig 3.14. Represents Temperature readings variations in function 

of the corresponding timestamps. 
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Figure 3. 14. Example of Grafana dashboard to visualize the temperature evolution on time. 

3.7 Complex event processing: Perseo 

Perseo (“Introduction—Perseo Context-aware Complex Event Processing,” n.d.) as a GE is 

designed to identify events patterns and react according to the rule’s logic. Perseo 

intercepts changes in the environment and matches them against the stored rules for 

further response by triggering actions if a match was detected. Perseo is built around 

different components each other is responsible for delivering a specific task; the 

following diagram (Fig. 3.15. Fig. 3.16.) presents the interactions between internal 

components of Perseo. 

 

Figure 3. 15 Complex event processing using Perseo adapted from (“Introduction—Perseo Context-aware 

Complex Event Processing,” n.d.). 
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Figure 3. 16 Interaction between Perseo and other FIWARE components adapted from (“Introduction—Perseo 

Context-aware Complex Event Processing,” n.d.). 

 

3.7.1 Perseo front-end 

Perseo front-end or “Perseo-fe” has the main task to intercept and process incoming 

notifications from Orion about value changes (events) storing rules, triggering actions 

and storing their execution results. It also uses a check mechanism for entities that have 

been silent for a maximum time interval; this comes in handy when a node breaks and 

is no longer transmitting readings. Rules are refreshed periodically by the front-end. 

3.7.2 Perseo core 

This is the backend, rule-engine for Perseo, this component retrieves the set of stored 

rules as well as detected events from the front-end. Perseo-Core matches the incoming 

events against the rule in its disposition, in case there is a match, it invokes the front-end 

to take actions according to the rule’s defined actions. 

3.7.3 MongoDB 

MongoDB holds data about the rules and executions of actions. 
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3.7.4 Orion context broker 

Through the notification mechanism, Orion is considered to be the source of events 

happening in the environment as well as the trigger for actions by updating command 

attributes of the action entity. 

3.7.5 Portal 

Represents the graphical user interface capable of creating a select type of rules called 

visual rules by using the FIWARE WireCloud GE (“Introduction—WireCloud,” n.d.). 

3.7.6 Orion Database 

For entities that have not communicated any values for a maximum time interval, Perseo 

queries Orion for the no-signal entity check that it runs periodically for silent entities. 

Perseo allows the definition of a no-signal rule as well to react for this specific kind of 

situation. 

3.7.7 SMS gateway 

Among the possible actions, Perseo can trigger there is sending an SMS to recipient 

number, and it is done through an HTTP post directly to the SMS Gateway (SMPP 

Adapter). 

3.7.8 SMPP server 

Among the possible actions, Perseo can trigger sending an SMS to recipient number, 

and it is done through an HTTP post directly to the SMS SMPP server. The 

corresponding SMPP server is configured with the other environment variables in 

Perseo. 

3.7.9 SMTP server 

It is possible to react to events by sending an email (i.e., notify me by email if no 

temperature measurements reached in the last one hour). This is done by configuring the 

SMTP with other environment variables in Perseo. 
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3.7.10 Generic HTTP server 

Perseo can interact with other external components through HTTP requests providing 

the endpoint URL as parameter Perseo can send posts request. 

3.7.11 Authorization server 

All interactions of Perseo with Orion require an access token refreshed periodically. In 

order to execute a rule that updates an entity in Orion, a trust token is associated with 

the executed rule and needs to be exchanged by an access token at the Authorization 

Server. 

 

Figure 3. 17. External Data flow Diagram in Perseo 

3.7.12 Rule setting 

Rules are meant to define how things should go when an event occurs; they are aware of 

events and comes as a response to them by triggering actions. Rules are defined by the 

user to match certain identified patterns and react accordingly to them. Different types 

of rules exist in Perseo, but the most exploited ones are plain rules. 

Plain rules are represented in a simplified JSON format. A request to add a rule is 

structured this way and is attached to appendices:  
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Perseo is going to be listening for incoming rule provisioning requests on port 9090. The 

post request is sent to this URL ‘http://perseo-fe:9090/rules’ with “/rules” as an endpoint. 

The same multi-tenancy headers FIWARE-service and service path are used to declare 

rules; this way, it will be easier to identify which rule belongs to which application 

service and service path in an organized and accurate manner. A rule holds a specific 

structure and is combined with the following required attributes: 

1) Name: the name of the rule consisting of only ASCII characters, digits, underscore, 

and dash with a maximum length of fifty char.  

2) Text: This field is where the user defines the conditions to be met. When this 

condition fulfills the action is triggered afterward. It should contain valid EPL (Event 

Processing Language) statements. EPL is a domain language of Esper (“Esper,” n.d.). 

It is used by Perseo-core for processing and matching events against the rules forany 

matches and generates actions to be taken accordingly. It uses an SQL-like language. 

3) Action: the set of actions to be executed by Perseo-fe after triggering the rule. 

The example beforementioned runs the condition specified in the text field, and in case 

of a match it triggers an update action to an entity’s command attribute (for example to 

set the value to ON). Inline ten values of different sensor readings are retrieved, and a 

condition, For instance, if the moisture level is under five 5% and the predicted rainfall 

for tomorrow is 10 mm, then tell the actuator node to trigger irrigation. The condition 

variable carries the value of the predicted rainfall from external weather forecast data 

sources. Line 30 represents the minimum time interval attribute between two action 

executions expressed in milliseconds. 

3.7.13 Action Request Structure 

Perseo uses different attributes for building actions, and the structures differ from one 

kind of action to another. The sequence diagram of Fig 3.18 explains the interactions 

between Perseo, MongoDB, and the SMS gateway in the process of triggering the action. 



60 

 

 

Figure 3. 18. Interactions between Perseo, MongoDB, and the SMS gateway in the process of triggering the 

action. 

3.7.14 SMS action 

The action attribute to send an SMS is attached to the appendix: 

Line 3 represents the body of the SMS. It is possible to precise the soil moisture variable 

value that triggered the rule directly by putting it inside ${soilMoisture}: it is known as 

string substitution. The phone number of the receiver is highlighted in line five as the 

value for the “to” attribute. In case of many receivers, the numbers are separated using 

whitespace character. 

3.7.15 Email action 

The triggered action will send an email to one or more recipients. The body of the mail 

is built in the “template” attribute and attached to the appendix as well as the address of 
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the sender and receivers to be added in the “from” and “to” attributes respectively. It is 

possible to perform string substitution for the “template,” “from,” “to,” and “subject.” 

3.7.16 HTTP request action 

Among the available actions, figures sending a HTTP request to any external entity 

exposing its port using the corresponding URL the body of the request is attached to the 

appendix. The following parameters are crucial: 

• method: POST by default. 

• URL: target URL mandatory. 

• headers: FIWARE-service and service-path headers. 

• JSON: the body of the request that will be sent as JSON. 

3.8 External sources of information: 

3.8.1 OpenWeatherMap API 

OpenweatherMap (“OpenWeatherMap About company,” n.d.) is a company which is active 

in the domain of IT, created in 2014 by a group of engineers and experts in Big Data, 

data processing, and satellite imagery processing. They provide a set of fast, easy to use 

API with databases of weather data available for use, as well as the satellite imagery and 

other environmental data. It provides current weather data as well as forecasts tailored 

to fit every need (for instance, they provide forecasts for 16 days as well as for five days 

every three hours). 

3.8.2 Agro API 

Agro API provides crucial data used for agriculture for the desired location, ranging 

from NDVI (normalized difference vegetation index) to soil moisture, to Ultraviolet 

index (UVI). 

3.8.3 NGSI Parser Module 

The NGSI Parser (CENIDET, 2017/2019) library for JavaScript is a piece of software 

designed to convert JSON entities into NGSI data model to be used by Orion. In order 

to adapt the data format acquired from the weather forecast provider, which is formatted 
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in a JSON file format and needs to be formatted according to NGSI format, the Parser 

role comes to do the necessary transformations. Fig. 3.19 explains the process to convert 

into NGSI and feed Orion with the data: 

 

Figure 3. 19. NGSI parser module working principle adapted from (CENIDET, 2017/2019) 

Ocb-sender oversees communicating the parsed entities to Orion through HTTP request 

and many other functionalities like querying, creating entities and subscriptions. The 

NGSI-parser uses a JSON schema Analyzer to tell whether the data structure follows a 

reference JSON schema. In the case of interest to get the weather forecast data, it will 

be necessary to send an HTTP request using a GET method to the corresponding server 

in order to be able to retrieve the data sent by the server in a JSON file format. 

After parsing the JSON, it will be possible to feed Orion directly with the updated data 

as well as sending it to another receiver or vice versa, which can be a mobile phone 

application, for instance. 
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4.1 Introduction  

In this chapter, the whole system architecture is recalled, and the operating performances of 

the complete prototype are be detailed.  

4.2 Smart agriculture use-case implementation 

In order to prove the effectiveness of the FIWARE platform in managing real use cases, a 

smart agriculture proof-of-concept has been set up. Although many different pilots for smart 

agriculture application have already been put in place, the unique selling point of this 

approach is that all the system building blocks concur to update the FIWARE orchestrator, 

i.e., the Orion context broker (green cube in Fig. 4.1). This is the core unit of FIWARE and 

all the other components of the system build, in a way, the context where the application 

runs into. 

4.3 Application Mock-Up and Prototype 

Figure 4. 1 Schematics of the complete system put in place. 
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Fig. 4.1 represent the mock-up of the complete systems. It encompasses the hardware part, 

down the left section of the figure, the back-end part, in the center of the schematics, and a 

couple of web interfaces, in the top left and the bottom right of the figure. The external 

source of information is represented by the Open Data portal of the province of Bolzano 

(“OpenData Portal Bolzano,” n.d.) which has been used to integrate remote data into the 

irrigation system. For a more detailed description of the single hardware and software 

components see Component Setup in Chapter 3. 

  

Figure 4. 2 Hardware components of the system prototype. 

Fig. 4.2 shows the system prototype during operation in the lab. The main hardware building 

blocks are four microcontrollers, which serve as sensor node, LoRaWAN gateway, actuator 

node, and a node that simulate the forecast change. The system is completed by a capacitive 

soil water content sensor connected to the sensor node and a water pump connected to the 

actuator node. 
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The picture shows the system irrigating the soil sample, as a consequence of the current 

context condition: soil water content acquired & weather forecasts for the next 6 hours. The 

water pump is triggered when the soil water content in the soil pot is less than 20% under 

sunny condition. Instead, the drought threshold is lowered to 10% when the weather 

forecasts predict a rain event within 6 hours. The forecast node pretends to simulate sudden 

weather changes when a push-button is pressed. Such action produces an update into the 

Orion context broker, which, in turn, provides this information to all the components that 

have subscribed to the forecast topic. In particular, this notification reached the Perseo 

complex event processor, which fires the irrigation action according to the beforementioned 

rule. This way, we are able to test the prototype in all the possible working conditions. 

As can be seen from the picture, only the LoRaWAN gateway is powered by USB, while 

the other three microcontrollers of the system are powered by LiPo batteries and can be 

distributed in the field with ease. The reason why the gateway needs to be powered in a 

different way is that this element of the network is continuously awake, waiting for new 

LoRa packets from the sensor node. On the one hand, this limits the deployment options for 

such a system. By the other hand, this attribute allows for collecting data from sensors that 

are within 10 km from the gateway (in-sight distance). 
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4.3.1 System operating principle 

 

Figure 4. 3 Flowchart of the implemented irrigation routine. 

Even though FIWARE relies on subscriptions and updates to build actions, as it has been 

described in chapter 3, a simplified flowchart of the prototype working principle is here 

reported. The aim of the following schematics is to highlight the role that the external 

sources of information play during the operation. As can be seen from Fig. 4.3, after each 

measurement, the acquired value is stored in the soil water content variable. Then the system 

chooses which rule to apply, depending on the last available forecast. Once the threshold 

value has been set to 20% or 10%, it is compared with the measured soil water content. If 

the condition is met (i.e., soil water content < threshold value), the water pump is triggered. 

Otherwise, the system goes into sleep mode (machine idle) until the next scheduled 

measurement. Special attention must be paid to the fact that the flowchart is not meant to 

represent an algorithm where subsequent processes/tasks are executed step by step. More 

appropriately, each update from the forecast node or the sensor node triggers the flow of the 

decision process. Despite the simplicity of the implemented application, this proof of 

concept demonstrates that FIWARE is suitable for implementing the most advanced 

approaches of the IoT paradigm. The transition from data management to context 
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information management allows for easier and more efficient implementation of crucial 

tasks like autonomous tuning and predictive maintenance, among others. Preliminary tests 

have shown that centralizing the decision kernel into a single kernel (Orion context broker) 

comes with several benefits. Firstly, the latency of the system is lowered by more than one 

order of magnitude (from seconds to sub-seconds) with respect to similar applications which 

exploit traditional data, management models. Moreover, the scalability and the integration 

of other sources of information is facilitated as many connectors (agents) are already 

available on the FIWARE website, and other target-specific connectors (generic enablers) 

can be developed through a dedicated syntax. Lastly, the computational power of the 

peripheral building block of the system can be entirely dedicated to internal tasks, for 

example, averaging the sensor read-out to enhance the measurement accuracy (at the sensor 

node) or run predictive models upon environmental data (in the forecast node)  (Herrera, 

Torgo, Izquierdo, & Pérez-García, 2010) Of course, the complexity of the system makes the 

use of such an approach not well suited for small size pilots. The added value of using 

FIWARE becomes evident as the number of the system components increases, i.e., the 

context becomes broader and more complex. In this case, the application can be upgraded 

or scaled up without the need to interrupt the current system operation. 
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5.1 Conclusion and discussion 

The objective of this work was to develop a system architecture design based on FIWARE 

platform by identifying and selecting the most adherent components for a smart irrigation 

application as well as selecting the appropriate and most suitable hardware and most 

widespread IoT communication protocols fitting into this specific application. The work has 

been completed by setting up a prototype to showcase and validate the proper functioning 

of the proposed architecture consisting of the different components. The added value of 

using the FIWARE platform comes with the ability to integrate multiple external context 

information from third-party data providers, that, in turn, increases awareness about context 

which is considered crucial for novel smart applications. It is necessary to capture all 

relevant events related to the specific application (weather forecasts, for instance, in the case 

of smart agriculture) and to be able to react in an appropriate manner. The complex event 

processing (CEP) unit of FIWARE allows for doing so. FIWARE comes with many complex 

components or Generic Enablers architectures which can be adopted and reused in an agile 

way, due to the fact that FIWARE is not linked to a specific application or function. It could 

adapt to many ranges of applications by tailoring components to adapt to the application’s 

need. Handling many components can be seen as tedious, especially for a small-scale 

application. Though the complexity of FIWARE, the subscription and registration 

mechanisms used by the Context Broker to report events adapts significantly to the smart 

application requirements, saving a considerable amount of time and resources compared to 

the traditional ways (report/react). However, the only issue faced was lack of support and 

the absence of documentation on many details regarding the implementation and use of 

components which have made solving a simple problem a significant challenge.  

The implemented prototype was able to 

- record sensor measurements in a reliable and timely manner; 

- forward them to the cloud instantly for further processing, visualization, and storage; 

- acquire context information from external sources to deduce and predict events; 

- allow the system to react to events immediately after they occur by triggering actions 

defined by user-set rules. 
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The prototype was designed and deployed for a smart agriculture application to trigger 

irrigation process based on the sensor readings as well as external weather forecast data. The 

use of this prototype in this specific application does not necessarily mean it cannot be 

deployed in other applications depending on the expressed need. For instance, the same 

prototype could also be customized and deployed in case of monitoring the temperature of 

PV panels or measuring real-time output current and voltage to analyze the collected data 

and assess the performance of the system. Furthermore, it will still have the chance to trigger 

actions according to the situation. Future perspective of this work would be to integrate GIS 

(geographic information system) data and extract relevant information such as thermal 

satellite images in order to perform and ensure uniform irrigation to the whole field (Roopaei, 

Rad, & Choo, 2017). It would also be interesting to establish a connection with a MAS (Multi-

Agent System) in order to extract knowledge from the persisted data about the different 

environmental components (i.e., knowledge about soil) by a big data analysis. 

5.2 Recommendations: pros and cons of FIWARE 

After familiarizing and acquiring deeper insights about FIWARE and its Generic Enablers, it is safe 

to say that there is much more to discover and experience about the platform and the possible 

integrations and developments to smart solutions. Tab 5.2 represents the pros and cons based on the 

author’s know-how with FIWARE. Table 5. 1 Pros and Cons of FIWARE platform 

 

Pros of FIWARE Cons of FIWARE 

Flexible development and easy deployment 

over the cloud network. 

Complex architecture linking many 

components together, making it a tedious 

task to configure and debug. 

Secure, supports big data analysis tools, 

complex event processing, and efficient 

context information management. 

Documentation lacking details, relatively 

hard to understand outdated examples, 

components with small or no tutorials. 

Allows the development of powerful Apps 

and data fed in real-time. 

A small community, lack of technical 

support. 

Supplies different sources of context 

information in a straightforward manner 

Would fit perfectly for a big scale 

implementation, not very interesting for 

small applications. 

Exploits Open API standards.  

Easily scalable and upgradeable.  
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APPENDIX 

1) example of a subscription is the following: 

1. curl -iX POST \   
2.   'http://orion:1026/v2/subscriptions/' \   
3.   -H 'Content-Type: application/json' \   
4.   -H 'fiware-service: agriculture' \   
5.   -H 'fiware-servicepath:/irrigation' \   
6.   -d '{   
7.   "description": "Notify Perseo on Humidity and Temperature changes on Device 1",   
8.   "subject": {   
9.     "entities": [   
10.       {   
11.             "type": "tempHumid",   
12.         "idPattern": ".*"   
13.       }   
14.     ],   
15.     "condition": {   
16.       "attrs": [   
17.    "temperatureDegree"   
18.       ]   
19.     }   
20.   },   
21.   "notification": {   
22.     "http": {   
23.       "url": "http://perseo-fe:9090/notices"   
24.     },   
25.     "attrs": [   
26.         "moistureLevel","temperatureDegree"   
27.     ],   
28.     "metadata": ["dateCreated", "dateModified"]   
29.   },   
30.   "throttling": 1   
31. }'   

2) method to provision a service group is done as follows: 

1.   curl -iX POST \   

2.   'http://iot-agent:4041/iot/services' \   

3.   -H 'Content-Type: application/json' \   

4.   -H 'fiware-service: agriculture' \   

5.   -H 'fiware-servicepath: /irrigation' \   

6.   -d '{   

7.  "services": [   

8.    {   

9.      "apikey":      "servicegroup",   

10.      "cbroker":     "http://orion:1026",   

11.      "entity_type": "actionEntity",   

12.      "resource":    "/iot/d"   

13.    }   

14.  ]   
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15. }'   

16.  

3) request used to provision a sensor: 

1. curl -iX POST \   

2.   'http://iot-agent:4061/iot/devices' \   

3.   -H 'Content-Type: application/json' \   

4.   -H 'fiware-service: agriculture' \   

5.   -H 'fiware-servicepath: /irrigation' \   

6.   -d '{   

7.   "devices": [{   

8.       "device_id": "01_FIWARE_DEVICE",   

9.       "entity_name": "urn:ngsi-ld:tempHumid:001",   

10.       "entity_type": "tempHumid",   

11.       "transport": "MQTT",   

12.          

13.       "attributes": [  {   

14.     "object_id": "humidity",   

15.    

16.           "name": "humidityLevel",   

17.           "type": "Number"   

18.         },  {   

19.     "object_id": "moisture",   

20.    

21.           "name": "moistureLevel",   

22.           "type": "Number"   

23.         }, {   

24.     "object_id": "temperature",   

25.    

26.           "name": "temperatureDegree",   

27.           "type": "Number"   

28.         }],   

29.         "internal_attributes": {   

30.         "lorawan": {   

31.           "application_server": {   

32.             "host": "10.8.244.170",   

33.             "username": "abdul",   

34.             "password": "123456",   

35.             "provider": "loraserver.io"   

36.           },   
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37.           "dev_eui": "af8db228120c1cdc",   

38.           "app_eui": "70B3D57ED000985F",   

39.           "application_id": "191",   

40.           "application_key": "722b28e7777bbaa31b3d3ef8adfba52f",   

41.           "data_model":"application_server"  } }} ] } '   

4) Provisioning single devices are done using the following post request: 

1. curl -iX POST \   

2.   'http://localhost:4041/iot/devices' \   

3.   -H 'Content-Type: application/json' \   

4.   -H 'fiware-service: agriculture' \   

5.   -H 'fiware-servicepath: /irrigation' \   

6.   -d '{   

7.  "devices": [   

8.    {   

9.      "device_id":   "pycom1",   

10.      "entity_name": "urn:ngsi-ld:actionEntity:001",   

11.      "entity_type": "actionEntity",   

12.      "protocol":    "PDI-IoTA-UltraLight",   

13.      "transport":   "MQTT",   

14.      "timezone":    "Europe/Berlin",   

15.      "attributes": [   

16.           

17.      ],   

18.        "commands": [   

19.                 { "name": "on", "type": "command" },  { "name": "off", "type": 

"command" }]  }]}' 

5) request to add a rule is structured this way: 

1. curl -iX POST \   

2.   'http://perseo-fe:9090/rules' \   

3.   -H 'Content-Type: application/json' \   

4.   -H 'fiware-service: agriculture' \   

5.   -H 'fiware-servicepath:/irrigation' \   

6.   -d '{ 

7.    

8.   "name": "irrigation_rule",   

9.  
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10.   "text": "select *, ev.humidityLevel? as humid, ev.temperatureDegree? as temp, 

ev.moistureLevel? as moisture, condition? as cond from pattern [every 

ev=iotEvent(cast(moistureLevel?,float)<5 and cast(condition?,float)>10)]"   

11.      

12. ,"action":{   

13.          "type":"update", 

14.    

15.          "parameters":{   

16.  

17.              "id":"urn:ngsi-ld:actionEntity:001",   

18.  

19.              "type":"actionEntity",   

20.  

21.              "attributes": [{   

22.                    "name":"ON",   

23.  

24.                    "type":"command",   

25.  

26.                    "value":"on"   

27.                    }]   

28.              ,  "interval" : "30e3", 

29.             "actionType": "UPDATE" }}}'   

6) action attribute to send an SMS: 

1. "action": {   

2.        "type": "sms",   

3.        "template": "Soil moisture has reached the level of ${soilMoisture}.",   

4.        "parameters": {   

5.            "to": "0664415142 0554415142"   

6.        }   

7.    }  

7) body of the mail is built in the “template” 

1. "action": {   

2.        "type": "email",   

3.        "template": "Temperature has reached the level of ${temperatureDegree}.",   

4.        "parameters": {   

5.            "to": "me@eurac.edu",   

6.            "from": "cep@student-pauwes.dz",   
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7.            "subject": "Temperature Warning"   

8.        }  }   

 

8) HTTP request to any external entity 

1.     "action": {   

2.         "type": "post",   

3.         "parameters": {   

4.             "url": "http://iot-agent:4041/v1/updateContext",   

5.             "method": "POST",   

6.             "headers": {   

7.                 "Content-Type": "application/json",   

8.                 "fiware-service": "agriculture",   

9.                 "fiware-servicepath": "/irrigation"   

10.             },   

11.             "json": {   

12.                 "contextElements": [{   

13.                     "isPattern": "false",   

14.                     "id": "urn:ngsi-ld:actionEntity:001",   

15.                     "attributes": [{   

16.                         "name": "on",   

17.                         "type": "command",   

18.                         "value": "USING HTTP POST FROM PERSEO"   

19.                     }]  }],   

20.                 "type": "actionEntity"  }   }  }   

 

9) Configuration Code for Actuator Node : 

1. device = "pycom1" #Defining device ID    
2. topic=("/servicegroup/"+device+"/cmd") # The MQTT Topic used to publish messages in   
3. state = 0   
4.    
5. # Function that does message formatting to extract value of command   
6.    
7. def sub_cb(topic, msg):    
8.     global state   
9.     print((topic, msg))   
10.     if msg == (device+"@on|"+"on").encode('UTF-8'):   
11.         pycom.rgbled(0x000010)   
12.         p0.value(1)   
13.         time.sleep(1)   
14.         pycom.rgbled(0x100000)   
15.         p0.value(0)   
16.         client.publish(topic, msg="off")   
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17.     elif msg == (device+"@on|"+"off").encode('UTF-8'):   
18.         pycom.rgbled(0x100000)   
19.         p0.value(0)   
20.    
21. wlan = WLAN(mode=WLAN.STA) # Defining the type of Wireless Local Area Network.   
22. wlan.connect("ABZN18056W10 7381", auth=(WLAN.WPA2, "6i8/K387"), timeout=5000) # 

Specifiying the SSID of the network, and password   
23.    
24. while not wlan.isconnected(): #    
25.     machine.idle()   
26. print("Connected to WiFi\n")   
27. pycom.rgbled(0x100000)   
28.    
29. #client = MQTTClient("device_id", "10.8.244.180",user="your_username", 

password="your_api_key", port=1883)   
30. client = MQTTClient("pycom1", "10.8.244.180", port=1883)   
31. client.set_callback(sub_cb)   
32.    
33. # OS Error handling, reboot when detected   
34. try:   
35.     client.connect()   
36. except OSError:   
37.     print("reboot\n")   
38.     machine.deepsleep(100)   
39.    
40. #Subscribing to the topic   
41. client.subscribe(topic)   
42.    
43. # Listening for incoming messages   
44. while True:   
45.     try:   
46.         client.wait_msg()   
47.     except OSError:   
48.         print("reboot\n")   
49.         machine.deepsleep(100)   

10) Configuration code for the sensor node 

1. import sys   
2. import time   
3. import pycom   
4. import struct   
5. import socket   
6. import machine   
7. import ubinascii   
8. from network import LoRa   
9. from machine import I2C   
10.    
11. pycom.heartbeat(False)   
12.    
13. # Initialise LoRa in LORAWAN mode   
14. lora = LoRa(mode=LoRa.LORAWAN, device_class=LoRa.CLASS_C, region=LoRa.EU868)   
15.    
16. # Create an ABP authentication   
17. dev_addr = struct.unpack(">l", ubinascii.unhexlify('00ccc852'))[0] # your device 

address here   
18. app_swkey = ubinascii.unhexlify('722b28e7777bbaa31b3d3ef8adfba52f') # your application 

session key goes here   
19. nwk_swkey = ubinascii.unhexlify('2a5dc5e89cecc44c3716e85c35a48633') # your network 

session key goes here   
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20.    
21. # Join the network using ABP (Activation By Personalisation)   
22. lora.join(activation=LoRa.ABP, auth=(dev_addr, nwk_swkey, app_swkey))   
23.    
24. # Remove all the non-default channels   
25. for i in range(3, 16):   
26.     lora.remove_channel(i)   
27.    
28. # Set the 3 default channels to the same frequency   
29. lora.add_channel(0, frequency=868100000, dr_min=0, dr_max=5)   
30. lora.add_channel(1, frequency=868100000, dr_min=0, dr_max=5)   
31. lora.add_channel(2, frequency=868100000, dr_min=0, dr_max=5)   
32.    
33. """ Temperature and humidity code part 1 (initialization) """   
34. TEMP_HUM_SENSOR_ID = 0x27 # identifies the sensor id   
35. i2c = I2C(0, I2C.MASTER, baudrate=115200)   
36. print("Found the following addresses: ")   
37. for i in range(len(i2c.scan())):   
38.     print(hex(i2c.scan()[i]))   
39.    
40. """ Soil moisture sensor code part 1 (initialization) """   
41. SOIL_SENSOR_ID = 0x36 # identifies the sensor id   
42. reg_1_soil = const(0x0F)   
43. reg_2_soil = const(0x10)   
44. reg_soil = bytearray([reg_1_soil, reg_2_soil])   
45.    
46. # Main loop   
47. i = 0 # iteration index   
48. while True:   
49.      
50.     # LED blinking   
51.     pycom.rgbled(0x000033)   
52.     time.sleep(1)   
53.     pycom.rgbled(0x000000)   
54.    
55.     # Send uplink   
56.     s = socket.socket(socket.AF_LORA, socket.SOCK_RAW) # create a LoRa socket   
57.     s.setsockopt(socket.SOL_LORA, socket.SO_DR, 5) # set the LoRaWAN data rate   
58.     s.setblocking(False) # make the socket non-blocking   
59.    
60.     #s.send(pkt) 
61.    
62.     #s.send(temp_hum) # uncomment when inserting temperature and humidity code   
63.     s.send(temp_hum_soil) # uncomment when inserting soil moisture code   
64.    
65.     # output print section   
66.     print(pkt + " sent")   
67.    
68.     time.sleep(6) # this dead-time is needed by the network to gather to your LoRa 

packets   
69.    
70.     # downlink receiving (if enabled)   
71.     rx, port = s.recvfrom(4096)   
72.     if rx:   
73.         print('Received: {}, on port: {}'.format(rx, port))   
74.    
75.     s.close() # close the LoRa socket   
76.     time.sleep(10)   
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11) Subscription of Perseo to Orion 

1. curl -iX POST \   
2.   'http://localhost:1026/v2/subscriptions/' \   
3.   -H 'Content-Type: application/json' \   
4.   -H 'fiware-service: agriculture' \   
5.   -H 'fiware-servicepath:/irrigation' \   
6.   -d '{   
7.   "description": "Notify Perseo  on Humidity and Temperature  changes on Pycom 1",   
8.   "subject": {   
9.     "entities": [   
10.       {   
11.             "type": "tempHumid",   
12.         "idPattern": ".*"   
13.       }   
14.     ],   
15.     "condition": {   
16.       "attrs": [   
17.    "temperatureDegree"   
18.       ]   
19.     }   
20.   },   
21.   "notification": {   
22.     "http": {   
23.       "url": "http://perseo-fe:9090/notices"   
24.     },   
25.     "attrs": [   
26.         "humidityLevel","moistureLevel","temperatureDegree"   
27.     ],   
28.     "metadata": ["dateCreated", "dateModified"]   
29.   },   
30.   "throttling": 1   
31. }'   

 

12) Subscription of QuantumLeap to Orion 

1. curl -iX POST \   
2.   'http://localhost:1026/v2/subscriptions/' \   
3.   -H 'Content-Type: application/json' \   
4.   -H 'fiware-service: agriculture' \   
5.   -H 'fiware-servicepath:/irrigation' \   
6.   -d '{   
7.   "description": "Notify quantumleap  on Humidity and Temperature  changes on Pycom 

1",   
8.   "subject": {   
9.     "entities": [{   
10.       "type": "tempHumid",   
11.       "idPattern": "tempHumid.*"   
12.     }],   
13.     "condition": {   
14.       "attrs": [   
15.         "humidityLevel", "moistureLevel", "temperatureDegree"   
16.       ]   
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17.     }   
18.   },   
19.   "notification": {   
20.     "http": {   
21.       "url": "http://quantumleap:8668/v2/notify"   
22.     },   
23.     "attrs": [   
24.       "humidityLevel", "moistureLevel", "temperatureDegree"   
25.     ],   
26.     "metadata": ["dateCreated", "dateModified"]   
27.   },   
28.   "throttling": 1   
29. }'   
30.          

13) Simple rule in Perseo 

1. curl -iX POST \   
2.   'http://localhost:9090/rules' \   
3.   -H 'Content-Type: application/json' \   
4.   -H 'fiware-service: agriculture' \   
5.   -H 'fiware-servicepath:/irrigation' \   
6.   -d '   
7.    
8. {   
9.   "name": "irrigation_rule5",   
10.   "text": "select *, ev.humidityLevel? as humid, ev.temperatureDegree? as temp, 

ev.moistureLevel? as moisture, condition? as condition from pattern [every 
ev=iotEvent((cast(moistureLevel?,float)<10) and condition?=1)]"   

11.     ,"action":{   
12.          "type":"update",   
13.          "parameters":{   
14.              "id":"urn:ngsi-ld:actionEntity:001",   
15.              "type":"actionEntity",   
16.              "attributes": [   
17.                    {   
18.                    "name":"on",   
19.                    "type":"command",   
20.                    "value":"on"   
21.                    }   
22.              ]   
23.              ,   
24.             "actionType": "UPDATE" }}}'   

14) Docker-compose configuration file 

1. version: "3.5"   
2. services:   
3.     
4.   orion:   
5.     image: fiware/orion:2.2.0   
6.     hostname: orion   
7.     container_name: fiware-orion   
8.     depends_on:   
9.       - mongo-db   
10.     networks:   
11.       - default   
12.     expose:   
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13.       - "1026"   
14.     ports:   
15.       - "1026:1026"   
16.     command: -dbhost mongo-db -logLevel DEBUG -noCache -logForHumans   
17.     healthcheck:   
18.       test: curl --fail -s http://orion:1026/version || exit 1   
19.    
20.   perseo-core:   
21.     image: telefonicaiot/perseo-core:1.3.0   
22.     ports:   
23.       - "8080:8080"   
24.    
25.     networks:   
26.       default:   
27.         aliases:   
28.           - perseo-core   
29.     command: -perseo_fe_url perseo-fe:9090   
30.    
31.   perseo-fe:   
32.     image: telefonicaiot/perseo-fe:1.9.0   
33.     ports:   
34.       - "9090:9090"   
35.     networks:   
36.       default:   
37.         aliases:   
38.           - perseo-fe   
39.     depends_on:   
40.       - perseo-core   
41.     environment:   
42.       - PERSEO_MONGO_ENDPOINT=mongo-db   
43.       - PERSEO_CORE_URL=http://perseo-core:8080   
44.       - PERSEO_LOG_LEVEL=debug   
45.       - PERSEO_ORION_URL=http://orion:1026   
46.       - PERSEO_SMTP_HOST=smtp.gmail.com   
47.       - PERSEO_SMTP_PORT=465   
48.       - PERSEO_SMTP_SECURE=true   
49.       - PERSEO_SMTP_AUTH_USER=XXXXX@XXXXX.com   
50.       - PERSEO_SMTP_AUTH_PASS=XXXXX   
51.    
52.    
53.   iot-agent:   
54.     image: fiware/iotagent-ul:latest # iotagent   
55.     hostname: iot-agent   
56.     container_name: fiware-iot-agent   
57.     depends_on:   
58.       - mongo-db   
59.       - mosquitto   
60.     networks:   
61.       - default   
62.     expose:   
63.       - "4041"   
64.       - "7896"   
65.     ports:   
66.       - "4041:4041"   
67.       - "7896:7896"   
68.    
69.     environment:   
70.       - IOTA_CB_HOST=orion # name of the context broker to update context   
71.       - IOTA_CB_PORT=1026 # port the context broker listens on to update context   
72.       - IOTA_NORTH_PORT=4041   
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73.       - IOTA_REGISTRY_TYPE=mongodb #Whether to hold IoT device info in memory or in a 
database   

74.       - IOTA_LOG_LEVEL=DEBUG # The log level of the IoT Agent   
75.       - IOTA_TIMESTAMP=true # Supply timestamp information with each measurement   
76.       - IOTA_CB_NGSI_VERSION=v1 # use NGSIv2 when sending updates for active attributes   
77.       - IOTA_AUTOCAST=true # Ensure Ultralight number values are read as numbers not 

strings   
78.       - IOTA_MONGO_HOST=mongo-db # The host name of MongoDB   
79.       - IOTA_MONGO_PORT=27017 # The port mongoDB is listening on   
80.       - IOTA_MONGO_DB=iotagentul # The name of the database used in mongoDB   
81.       - IOTA_MQTT_HOST=mosquitto # The host name of the MQTT Broker   
82.       - IOTA_MQTT_PORT=1883 # The port the MQTT Broker is listening on to receive 

topics   
83.       #- IOTA_DEFAULT_RESOURCE=   
84.       - IOTA_PROVIDER_URL=http://iot-agent:4041   
85.     healthcheck:   
86.       test: curl --fail -s http://iot-agent:4041/iot/about || exit 1   
87.    
88.   mongo-db:   
89.     image: mongo:3.6   
90.     hostname: mongo-db   
91.     container_name: mongo-db   
92.     expose:   
93.       - "27017"   
94.     ports:   
95.       - "27017:27017"   
96.     networks:   
97.       - default   
98.     command: --bind_ip_all --smallfiles   
99.     volumes:   
100.       - mongo-db:/data   
101.    
102.   mosquitto:   
103.     image: eclipse-mosquitto   
104.     hostname: mosquitto   
105.     container_name: mosquitto   
106.     expose:   
107.       - "1883"   
108.       - "9001"   
109.     ports:   
110.       - "1883:1883"   
111.       - "9001:9001"   
112.     volumes:   
113.       - ./mosquitto/mosquitto.conf:/mosquitto/config/mosquitto.conf   
114.     networks:   
115.       - default   
116.    
117.    
118.   # Quantum Leap is persisting Short Term History to Crate-DB   
119.   quantumleap:   
120.     image: smartsdk/quantumleap:0.7.0   
121.     hostname: quantumleap   
122.     container_name: fiware-quantumleap   
123.     ports:   
124.       - "8668:8668"   
125.     depends_on:   
126.       - crate-db   
127.     environment:   
128.       - CRATE_HOST=crate-db   
129.     healthcheck:   
130.       test: curl --fail -s http://localhost:8668/v2/version || exit 1   
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131.    
132.    
133.   crate-db:   
134.     image: crate:${CRATE_VERSION:-3.3.5}   
135.     hostname: crate-db   
136.     container_name: db-crate   
137.     ports:   
138.       # Admin UI   
139.       - "4200:4200"   
140.       # Transport protocol   
141.       - "4300:4300"   
142.     command: crate -Clicense.enterprise=false -Cauth.host_based.enabled=false  

-Ccluster.name=democluster -Chttp.cors.enabled=true -Chttp.cors.allow-origin="*"   
143.     volumes:   
144.       - crate-db:/data    
145.    
146.   # Other services   
147.   grafana:   
148.     image: grafana/grafana:latest   
149.     container_name: grafana   
150.     depends_on:   
151.       - crate-db   
152.     ports:   
153.       - "3003:3000"   
154.     environment:   
155.       - GF_INSTALL_PLUGINS=grafana-clock-panel,grafana-worldmap-panel   
156.     volumes:   
157.       - grafana:/var/lib/grafana   
158.      
159. networks:   
160.   default:   
161.     ipam:   
162.       config:   
163.         - subnet: 172.18.1.0/24   
164.   
165. volumes:   
166.   mongo-db: ~   
167.   crate-db: ~   
168.   grafana: ~   
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5.3 Research grant use: 

Abdelkader SALLEMINE : Energy Engineering  

     

Item  price Column1 currency 

price  

exchange 

Travel 

Insurance 

7324.22 DZD 119.01  $61.54  

Bus ticket 

(Tlemcen-

Algiers-

Adrar-

Tlemcen) 

5350 DZD 119.01  $44.95  

Flight tickets 

(Algiers-

milan)  

45465 DZD 119.01  $382.03  

VISA fees 21876 DZD 119.01  $183.82  

Airport 

transportation 

24 EUR 1 EUR = 

1.1397 

USD 

 $27.35  

Bus ticket 

(Bolzano-

Milan) 

42.5 EUR 1 EUR = 

1.1397 

USD 

 $48.43  

Train tickets 

(Milan-

verona-

Bolzano) 

49.3 EUR 1 EUR = 

1.1397 

USD 

 $56.18  

Bank 

exchange 

fees (400 

USD) 

7.01 EUR 1 EUR = 

1.1397 

USD 

 $8.00  
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Sim Card + 1 

month 

internet 

30 EUR 1 EUR = 

1.1397 

USD 

 $34.19  

stay permit  116.46 EUR 1 EUR = 

1.1397 

USD 

 $132.72  

Bank 

exchange 

fees 

17.49 EUR 1 EUR = 

1.1433 

USD 

 $20.00  

field 

transportation 

15 EUR 1 EUR = 

1.1433 

USD 

 $17.14  

Internet 

charge 1 

month 

15 EUR 1 EUR = 

1.1433 

USD 

 $17.15  

     

     

Bank 

exchange 

fees 

2.5 EUR 1 EUR = 

1.1458 

USD 

 $2.86  

tickets 

(Bolzano-

verona ) 2 

ways 

17.59 EUR 1 EUR = 

1.1433 

USD 

 $20.11  

entrance 10 EUR 1 EUR = 

1.1433 

USD 

 $11.43  

Train tickets 

(Milan-

trentino) 2 

ways 

14.6 EUR 1 EUR = 

1.1433 

USD 

 $16.70  
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Thesis 

printing 

4390 DZD 1 USD = 

119.01 

DZD 

 $36.88  

 

      

Research grant was spent according to the table above, mostly on transportation, visa, 

printing. It was not possible to obtain the devices due to many financial and rule 

complications.  

Total :   $1,121.48 
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