
 

  
  
  

  

  

  

  

  

  

Master Dissertation 

  

  

Submitted in partial fulfillment of the requirements for the Master degree in   

Water Engineering 

  

Presented by   

  
Abdel Aziz O.R. GADO     

  

  

  

Defended on 04/09/2019 Before the Following Committee: 

  

  

Chair       Ghenim Abderrahmane Ph.D       

Supervisor       Navneet Kumar Ph.D       

External Examiner                         

Internal Examiner   

Tirusew Asefa Ph.D 

    

 (University of South Florida, USA)                    

  

  

.   

.   

 

PAN-AFRICAN UNIVERSITY 

  

INSTITUTE OF WATER AND ENERGY SCIENCES 

  

(including CLIMATE CHANGE) 

  

(University of Tlemcen, Algeria)                         

(ZEF, Bonn –Germany)                   

 ( PAUWES, Algeria ) 

Academic Year 2018-2019 

Hydrological Modeling for Water Balance Components and 

Flood Hazard Assessment under Climate Change in Mono, 

Lower Basin, Benin and Togo 
 

 

Chabane Sari Sidi Mohamed Ph.D 



 

ii 

 

DECLARATION 

I, Abdel Aziz O.R. GADO, the undersigned, declare that the thesis entitled “Hydrological 

Modeling for Water Balance Components and Flood Hazard Assessment under Climate Change 

in Mono, Lower Basin, Benin and Togo”, is a result of my own work and that it has not been 

presented to any other learning institution for a similar award of degree, diploma or other 

professional. Where other sources of information have been used, they have been acknowledged. 

I understand that non-adherence to the principle of academic honesty and integrity, 

misrepresentation/fabrication of any idea/data/fact/source/ will constitute sufficient ground for 

disciplinary action by the university.  

 

 

 

                                                                                

 

 

 

 

Signature:                                         

Abdel Aziz O.R. GADO                                                                                               Date                                                                                                                                         

 

 

 

 

 

 

 

 

 

 

 

 

 

27.09.2019 



 

iii 

 

CERTIFICATION 

 

This thesis has been submitted with my approval as the supervisor. 

 

 

 

 

 

 

 

 

 

Signature :                                              

Dr.-Ing. Navneet KUMAR                                                                                                         Date                                                                                                                                         

Center for Development Research (ZEF), University of Bonn, Germany  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

29.09.2019 



 

iv 

 

ACKNOWLEDGEMENT 

Above all, I thank Almighty God for taking care of me throughout the duration of my studies. 

I would like to send my sincere thanks to the African Union (AU) through Pan African University 

Institute of Water and Energy Sciences (PAUWES) including climate change for awarding me a 

scholarship to pursue my graduate studies in Algeria and also giving me a research grant to conduct 

my Masters’ Thesis project. 

My sincere appreciation goes to West African Science Centre on Climate Change and Adapted 

Land Use (WASCAL) including the scientific panel  who spared no effort to support the 

accomplishment of this thesis. 

I could also not complete this study without the support from numerous individual and 

organizations, therefore; I would like to express my heartfelt thanks to: 

 My supervisor Navneet KUMAR, for his advice, guidance and motivation during the 

accomplishment of the present study. I am thankful to you. 

  Dr. Jean HOUNKPE, who helped me during data collection and taught me engineering 

skills which were useful during the whole process of my thesis. I am deeply grateful for 

supporting and encouranging me. 

 Dr. Aymar BOSSA, for welcoming me at WASCAL competence center and for guiding 

me during my stay. 

 Dr.Yacouba Yira, for his thoughtful advice and his precious help. 

 To my parents, friends and colleagues for their support.  
 

  



 

v 

 

LIST OF ABBREVIATIONS 

AET: Actual Evapotranspiration 

CORDEX:  Coordinated Regional Climate Downscaling Experiment 

DEM:  Digital Elevation Model 

DGEau :  Direction Générale de l’Eau (Benin) 

DMN :  Direction de la Météorologie Nationale 

EM-DAT :  Emergency Events Data Base 

EQM :  Empirical Quantile Mapping 

ETP:   Evapotranspiration  

GFDL-ESM2M: Global Coupled Climate – Carbon Earth System Models 

HadGEM2-ES:Hadley Global Coupled Environment  –Earth System Models 

GCM:  Global Climate Model  

GDP:  Gross Domestic Product 

HBV-light:  Hydrologiska Byråns Vattenbalansavdelning-light 

IHMS:  Integrated Hydrological Modelling System 

IPCC:  Intergovernmental Panel on Climate Change 

NSE:   Nash Sutcliff Efficiency 

OK:   Ordinary Kriging 

RCM:  Regional Climate Model 

RCP:   Representative Concentration Pathway 

REMO: Regional Model 

SDG:  Sustainable Development Goal 

SRES:  Special Report on Emission Scenarios 

SRTM:  Shuttle Radar Topography Mission 

UNDP:  United Nations Development Program 

UNFCCC:  United Nations Framework Convention on Climate Change 

USGS:  United States Geological Survey 

WMO:  World Meteorological Organisation  

 

 

 



 

vi 

 

TABLE OF CONTENTS 

 

DECLARATION ............................................................................................................................ ii 

CERTIFICATION ......................................................................................................................... iii 

LIST OF ABBREVIATIONS ......................................................................................................... v 

TABLE OF CONTENTS ............................................................................................................... vi 

LIST OF FIGURES ....................................................................................................................... ix 

LIST OF TABLES ......................................................................................................................... xi 

ABSTRACT .................................................................................................................................. xii 

RESUME ..................................................................................................................................... xiii 

CHAPTER ONE ........................................................................................................................... 14 

1. INTRODUCTION ................................................................................................................. 14 

1.1. Background Information ................................................................................................ 14 

1.2. Problem statement .......................................................................................................... 16 

1.3. Research Objective ............................................................................................................. 18 

1.3.1. Main Objective ............................................................................................................ 18 

1.3.2. Specific objectives ....................................................................................................... 18 

1.4. Research questions ............................................................................................................. 18 

1.5. Relevance of the study ....................................................................................................... 18 

1.6. Thesis Outline .................................................................................................................... 19 

CHAPTER TWO .......................................................................................................................... 20 

2. LITERATURE REVIEW ......................................................................................................... 20 

2.1. Hydrological modeling ....................................................................................................... 20 

2.1.1. A general overview of Hydrological modeling ........................................................... 20 

2.1.2. Brief description of the HBV model and applications ................................................ 21 



 

vii 

 

2.1.3. Data processing and Model set-up............................................................................... 26 

2.1.4. Areal precipitation ....................................................................................................... 29 

2.2. Climate change ............................................................................................................... 30 

2.2.1. Global Circulation Model ........................................................................................ 30 

2.2.2. Representative Concentration Pathways (RCP)...................................................... 30 

2.2.3. An overview of  WASCAL Climate models .......................................................... 31 

2.2.4. Bias correction and Quantile mapping method ....................................................... 32 

2.3. Flood Frequency analysis ............................................................................................... 33 

2.3.1. An overview of Flood frequency analysis .............................................................. 33 

2.3.2. Probability distribution ........................................................................................... 34 

2.3.3. Parameter Estimation Method................................................................................. 35 

2.3.4. HYFRAN Software ................................................................................................. 35 

CHAPTER THREE ...................................................................................................................... 37 

3. STUDY AREA ......................................................................................................................... 37 

3.1. An Overview of the Basin .................................................................................................. 37 

3.2. Population and Economics activities.................................................................................. 38 

3.3.  Topography, Vegetation, and Soil..................................................................................... 38 

3.4.  Climate .............................................................................................................................. 40 

CHAPTER FOUR ......................................................................................................................... 42 

4. MATERIAL AND METHODS ................................................................................................ 42 

4.1. Data collection- Data sources ............................................................................................. 42 

4.2. Hydrological modeling ....................................................................................................... 44 

4.2.1. Data Processing for HBV Simulation .......................................................................... 44 

4.2.2. HBV model set-up ....................................................................................................... 46 

4.3.  Evaluating climate change impact on water balance components .................................... 47 



 

viii 

 

4.3.1. Data sources ................................................................................................................. 47 

4.3.2.  Data processing and evaluation .................................................................................. 48 

4.3.3. Future projected discharge simulation and climate change signal analysis ................ 48 

4.4. Flood frequency analysis and detection of change due to climate change ......................... 49 

CHAPTER FIVE .......................................................................................................................... 50 

5. RESULTS AND DISCUSSION ............................................................................................... 50 

5.1. HBV model set-up .............................................................................................................. 50 

5.1.1. Calibration ....................................................................................................................... 50 

5.1.2. Model Validation ......................................................................................................... 52 

5.2. Discharge analysis .............................................................................................................. 54 

5.3. Climate models’ outputs analysis ....................................................................................... 56 

5.3.1.Uncorrected climate model outputs .............................................................................. 56 

5.3.2. Projected climate data correction using the quantile mapping .................................... 57 

5.4. Climate change Signal  (HadGEM2-ES and GFDL-ESM2M) on water balance components

 ................................................................................................................................................... 60 

5.5. Flood frequency analysis and evaluation of its change due to climate effects .................. 67 

5.5.1. Determination of best-fit probability distribution ....................................................... 67 

5.5.2. Climate change impact on flood frequency ................................................................. 69 

CHAPTER SIX ............................................................................................................................. 73 

6. CONCLUSION AND RECOMMENDATIONS ..................................................................... 73 

REFERENCES ............................................................................................................................. 75 

APPENDIXES ................................................................................................................................. a 

 

 

 

 



 

ix 

 

LIST OF FIGURES 

Figure 1. Flood hazard map of the Lower Mono river basin (Lacs district), (Ntajal, 2016) ........ 17 

Figure 2. The general structure of HBV model ............................................................................ 23 

Figure 3. The schematic model structure ...................................................................................... 24 

Figure 4. Flood frequency analysis flow chart .............................................................................. 34 

Figure 5. Hyfran fitting menu ....................................................................................................... 36 

Figure 6. Location of Mono River ................................................................................................ 37 

Figure 7. Land use/land cover classification using 2010 Landsat 7 ETM+ image (30 m; Path/Row: 

198/52), (Ntajal, 2016) .................................................................................................................. 39 

Figure 8. Inter-annual rainfall variability  for the period 1983 to 2010 ........................................ 40 

Figure 9. Mean annual temperature for the period 1983 to 2010 ................................................. 41 

Figure 10. Hydro-climatic stations of Mono Basin ...................................................................... 43 

Figure 11. Observed and simulated Hydrographs for the calibration period 1986 -1990 ............ 51 

Figure 12. HBV model validation for the period 1991-1992 ........................................................ 53 

Figure 13. HBV model validation in year 2010 ............................................................................ 53 

Figure 14. HBV model validation in year 1985 ............................................................................ 54 

Figure 15. Trend of annual maximum discharge (Qmax) and annual rainfall in Mono basin ..... 55 

Figure 16. Mean Monthly hydrograph of Mono River ................................................................. 55 

Figure 17:  Comparison of observed and simulated mean monthly rainfall and mean temperature 

before correction over the period 1983-2005;  (a) and (c)- HadGEM2-ES simulation; (b) and (d)- 

GFDL-ESM2M simulation ........................................................................................................... 56 

Figure 18: Uncorrected and bias corrected historical rainfall (HadGEM2-ES); (c) and (e)- 

uncorrected;       (d) and (f)- bias corrected .................................................................................. 58 

Figure 19.Uncorrected and bias corrected historical temperature (GFDL- ESM2M); (g) and (i)- 

uncorrected; (h) and (j)- bias corrected ......................................................................................... 59 

Figure 20. Uncorrected and bias corrected historical Evapotranspiration, Eto (HadGEM2-ES),                              

(a)- uncorrected and (b)- bias corrected ........................................................................................ 60 

Figure 21. Climate change signal of precipitation and  Temperature (Tmean), between the 

reference (1983-2005) and future (2020-2049 and 2070-2099) periods under emission scenario 

RCP 4.5. (a) and (c)- uncorrected; (b) and (d)- bias corrected. BC is bias corrected and UC refers 

to uncorrected bias (HadGEM2-ES) ............................................................................................. 61 



 

x 

 

Figure 22. Climate change signal of Evapotranspiration and  Discharge between the reference 

(1983-2005) and future (2020-2049 and 2070-2099) periods under RCP 4.5. (a) and (c)- 

uncorrected; (b) and (d)- bias corrected. ....................................................................................... 63 

Figure 23. Climate change signal of precipitation and Temperature (Tmean), between the reference 

(1983-2005) and future (2020-2049 and 2070-2099) periods under emission scenario RCP 

4.5.RCP 4.5. BC is bias corrected and UC refers to uncorrected bias (GFDL- ESM2M); (a) and 

(c)- uncorrected; (b) and (d)- bias corrected. ................................................................................ 65 

Figure 24. Climate change signal of evapotranspiration and discharge  between the reference 

(1983-2005) and future (2020-2049 and 2070-2099) periods under RCP 4.5 (GFDL-ESM2M); (a) 

and (c)- uncorrected; (b) and (d)- bias corrected. ......................................................................... 66 

Figure 25.Weibull distribution ...................................................................................................... 68 

Figure 26. Change in future quantiles based on historical quantiles ............................................ 72 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

xi 

 

LIST OF TABLES 

Table 1. HBV-light sub- models, (Houngue, 2018)...................................................................... 25 

Table 2. Description of input data ................................................................................................. 42 

Table 3. Calibration parameters .................................................................................................... 50 

Table 4. HBV model efficiency results for the calibration period ................................................ 52 

Table 5. HBV model efficiency results during validation periods ............................................... 52 

Table 6: Projected climate variables change between the reference (1983-2005) and future (2020-

2049; 2070-2099) with bias corrected and bias uncorrected HadGEM2-ES simulations ............ 62 

Table 7. Projected change of climate variables between the reference (1983-2005) and future 

(2020-2049; 2070-2099) with bias corrected and bias uncorrected GFDL-ESM2M simulations 64 

Table 8. Comparison of the criteria values for different probability distributions for HadGEM2-

ES. BIC: Bayesian Information criterion, AIC: Akaike  Information Criterion and XT: Quantile

....................................................................................................................................................... 68 

Table 9. Comparison of the criteria values for different probability distribution,  (GFDL-

ESM2M) ....................................................................................................................................... 69 

Table 10. Frequency analysis results for the periods 1983-2005, 2020-2049 and 2070-2099,  

Weibull distribution (Method of moments), HadGEM2-ES and GFDL-ESM2M ....................... 70 

Table 11. Percentage change in future quantiles relative to the historical quantiles .................... 71 

 

 

 

 

 

 

 

 

 

 

 

 



 

xii 

 

ABSTRACT 

Climate change is expected to increase both the magnitude and frequency of extreme precipitation 

events, which may lead to more intense and frequent river flooding. This study evaluated  the 

impact of climate change on water balance components and flood hazard in the Lower Mono river 

Basin through rainfall- runoff modelling. The projection from two West African Science Service 

Center on Climate Change and Adapted Land Use (WASCAL) climate model, GFDL-ESM2M 

and HadGEM2-ES under RCP 4.5 and the hydrological model HBV (Hydrologiska Byråns 

Vattenbalansavdelning) - light  is considered in this study. HBV model was set up for the study 

area and the modelcalibration and validation was performed against the observed discharge 

measurments. Statistical bias correction (empirical quantile mapping) was  applied to daily 

precipitation, temperature and evapotranspiration. Uncorrected and bias corrected climate data was 

then used as input for HBV model to simulate the water balance components. Considering both 

uncorrected and bias corrected climate variables, the projected climate change signal for the Basin 

was analyzed through the comparison between two future periods (2020- 2049 and 2070-2099) 

and the historical time period (1983- 2005). The impact of the detected climate change signal on 

flood frequency was then assessed using HYFRAN  software. The results indicated that: (i) 

precipitation will increase by 19% and 35%; temperature increases from 0 to 1.17°C and 1.17 to 

3.20°C;  actual evapotranspiration increase by  9% and  20% and discharge increase by 59% and 

102% respectively for the periods 2020-2049 and 2070- 2099 according to HadGEM2-ES model. 

GFDL-ESM2M model also illustrates an increase in precipitation by 15% and 30%, temperature 

from 0 to 6.5°C and 6.5°C to 7.41°C but a decrease in discharges by 58% for 2050 and by 44% 

for 2100 repectively. In case of  impact of the climate change signal on flood frequency, the 

average change resulting from the two models indicated a decrease for the return periods 50, 20, 

10, 5, 3 for future periods 2020-2049 and return period 50 for the period 2070-2099 whereas an 

increase for the return periods 3, 2 (2020-2049)  and 20, 10, 10, 5, 3 and 2 (2070-2099).These 

results suggest for future flood management under climate change in Mono river basin  to consider 

both increase and decrease in the flood frequency as the study shows that both trends are plausible. 

Key words: HBV, Climate change signal, Flood frequency, Mono river Basin 
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RESUME 

Les changements climatiques devraient accroître à la fois l'ampleur et la fréquence des événements 

de précipitations extrêmes, ce qui pourrait entraîner des crues plus intenses et fréquentes. Cette 

étude évalue l’impact du changement climatique sur les composantes du bilan hydrique et les 

risques d’inondation dans le bassin inférieur du fleuve Mono à l’aide d’une modélisation pluie-

débit. Les projections de deux modèles climatiques GFDL-ESM2M et HadGEM2-ES du Centre 

de services scientifiques Ouest-Africains sur le changement climatique et l’utilisation adaptée des 

sols (WASCAL), conformément au RCP 4.5, ont été utilisées pour caler le modèle hydrologique 

HBV-light (Hydrologiska Byråns Vattenbalansavdelning). Après le calage et  la validation du 

model ainsi que l’évaluation des séries de données historiques générées par les  modèles 

climatiques, une correction statistique des erreurs (cartographie empirique des quantiles) a été 

appliquée aux précipitations, à la température et à l’évapotranspiration journalières. Les données 

non corrigées et corrigées ont ensuite été utilisées comme entrée pour le modèle HBV afin de 

simuler les composantes du bilan hydrique. En tenant compte à la fois des variables climatiques 

non corrigées et corrigées, le signal de changement climatique projeté pour le bassin a été analysé 

par comparaison entre deux périodes futures (2020-2049 et 2070-2099) et la période historique 

(1983-2005). L'impact du signal de changement climatique détecté sur la fréquence des 

inondations a ensuite été évalué à l'aide du logiciel HYFRAN. Les résultats indiquent pour le signal 

de changement climatique sur les composantes du bilan hydrique que: (i) les précipitations 

augmenteront de 19% et 35%; température de 0 à 1,17 ° C et de 1,17 à 3,20 ° C; évapotranspiration 

réelle de 9% et 20%; débit de 59% et 102% respectivement pour les périodes 2020-2049 et 2070-

2099 selon le modèle HadGEM2-ES. Le modèle GFDL-ESM2M illustre également une 

augmentation des précipitations d'environ 15% et 30%, une température de 0 à 6,5 ° C, puis de 6,5 

° C à 7,41 ° C, mais une diminution des débits de 58% d'ici 2050 et de 44% d'ici 2100. En ce qui 

concerne l'impact du signal du changement climatique sur la fréquence des crues, la variation 

moyenne résultant des deux modèles a indiqué une diminution pour les périodes de retour  50, 20, 

10, 5, 3 et 50 respectivement pour les périodes futures 2020-2049 et 2070-2099 alors qu'une 

augmentation pour les périodes de retour 3, 2 (2020-2049) et 20, 10, 10, 5, 3 et 2 (2070-2099). Ces 

résultats suggèrent qu’une gestion future des inondations sous le changement climatique dans le 

fleuve Mono prenne en compte à la fois l’augmentation et la diminution de la fréquence des 

inondations car l’étude montre que les deux tendances sont possibles. 

Mots-clés: HBV, Signal du changement climatique, Frequence d’inondation, Basin du Mono
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CHAPTER ONE 

1. INTRODUCTION 

1.1. Background Information 

Water, one of the arts for humanity, has always been a key driver of social and economic 

development. Today the art is becoming more challenging due to the increasing need of people to 

be protected from water leading to floods (Mujumdar & Kumar, 2012). Flooding occurs when 

water accumulates in places that are not normally submerged. Flood is the most common form of 

natural disaster that disturbs human activities, causes loss of human lives and destroy properties 

(Asumadu-Sarkodie & Owusu, 2016). It occurs when the river water inundates or overflow the 

land which is generally dry and it impacts human life and socio-economic life and harms the 

natural environment (Ufe, 2015). The human, material, and ecological costs caused by flooding can 

be overwhelming for sustainable development.  

Flood disasters are caused by either natural factors, such as climate change and climate variability 

or anthropogenic factors, like socio- economic and land-use developments (Shrestha & 

Lohpaisankrit, 2016).  It has also been reported that flood hazards events will increase under 

conditions of climate change and put a heavy burden on people’s lives, livelihoods and on the 

economy (Walz & Sassen, 2019). Equally, the effects associated with climate change such as sea 

level rise, extreme rainfall events, and higher river discharges may be results of this as well. 

Many countries all over the world are experiencing heavy rains, rivers overflow, hurricanes, 

typhoons, tsunamis resulting in unexpected floods which decimate entirely or partly some 

localities. Based on the Hyogo Framework for Disaster Risk Reduction’s, flood statistical data 

from 1980 to 2008 which have been registered almost 3000 flood events have caused nearly 

200,000 deaths, while the economic loss during that same period was US$ 397 billion translating 

to annual economic loss US$ 13.5 billion (UNISDR, 2005). On the other hand, flood disasters 

account for half of all deaths caused by natural catastrophes (Ohl, 2000). In 2010, floods were 

responsible for the loss of more than 8,000 human lives and affected about 180 million people 

(Guha-sapir, 2010). The devastating floods that occurred in Pakistan, China, Togo, and Benin are 

some examples. The UN Office for the coordination of Humanitarian Affairs (OCHA) has also 



 

15 

 

stated that compare with previous years, 2010 has recorded the largest number of people affected 

and dying from flooding in the world, with Africa being a case in point. 

Africa is one of the most vulnerable continents to climate change across the world  (Lamboni et 

al.,  2019). The number of people affected by floods in this continent has dramatically increased 

over the last decades (Guha-sapir, 2010). Extensive urbanization, population growth in natural 

floodplains, increasing rate of deforestation, are also the key factors that rise the number of 

people vulnerable to flood (Ramesh, 2012). In 2007, Africa was particularly hit by floods which 

affected more than two million lives in the central and Eastern parts in January, and 2.6 million 

victims in a large region from west to east in July and August of the same year (Lamboni et al., 

2019).  

 Changes in climate variables pattern such as precipitation, temperature and evaporation, resulting 

from climate change, lead to modifications in the global water cycles and affect water resources 

(Bates, Kundzewicz, & Palutikof, 2008). In addition to the projected changes in these variables, 

the climate change will also have implications on the extreme events. Studies have shown that 

flood intensity is highly sensitive to temperature in many parts of the world   (Prudhomme et al.,  

2013). Other studies also have discussed that climate change has been a contributing factor to flood 

risk by raising the precipitation amount relative to the average annual rainfall (Flemming, 

Tregoning, Kuhn, Purcell, & McQueen, 2012).Therefore, developing countries, low- income 

populations are likely to suffer from floods. This is the case for West Africa, one of the regions in 

the continent that are most vulnerable to climate change (IPCC, 2012). Studies have reported that 

West Africa experienced above normal precipitation during June – September compared to the last 

35 years as a result of the increased overall intensity of the monsoon season  (Adegoke et al., 

2019).  From 1900 till today, over 300 occurrences of climate-related hazards such as flood and 

droughts have been recorded in West Africa affecting almost 95 million people, displacing roughly 

two million people and causing about 173,000 casualties, (Walz & Sassen, 2019). Since 1950, 

flood events caused almost 2,384,437 deaths and about 720 billions of dollars ($) of damages in 

West Africa.  

Many countries in West Africa including Togo, Benin, Ghana, Nigeria, Burkina Faso, Senegal, 

Ivory Coast have been affected from impacts of devastating flooding in both cities and in rural 

areas (Ntajal, 2016). From 1900 to 2016, 3,189,547 people have been affected by flood in Benin 
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and almost 40% of them experienced riverine flood (Houngue, 2018). In 2010, torrential rains and 

severe flooding hit Benin and Togo. The 2010 flood event is one of the biggest natural disasters 

recently experienced by both countries. The damage caused by that flooding in Benin amounted 

to 78.3 billion CFA francs (about USD 160 million) and was related to the total or partial 

destruction of assets including buildings and inside property, infrastructure, inventory, etc.  The 

losses amounted to 48.8 billion CFA francs, approximately USD 100 million (World Bank, 2011). 

This resulted in changes in economic flows including production deficits and unrealized sales. As 

for Togo, according to “EM- DAT” (Emergency Events Database) of the Centre for Research on 

the Epidemiology (CRED), the 2010 flood has impacted both urban and rural areas throughout the 

entire country, affecting 82,767 people; causing damages and losses amounted to an estimated 1.1 

percent of GDP. Many urban and rural areas located within the Mono River Basin, the largest river 

shared between Togo and Benin were hit almost every year by floodings which were caused by 

the overflow of the River. The previous flood events occurred in 2007, 2008 and 2018 in Togo 

have also caused a lot of damages and loss to people living in areas located in the Mono River 

Basin (Ntajal et al., 2018).  

1.2. Problem statement  

Flood event has many effects on economic, social and environmental aspects which are useful to 

achieve the sustainable development goals and it is taken to be the best common and extremely 

destructive of all hazards and also predicted to become more frequent, dominant and serious in the 

coming year generally in the growing towns (Mureithi et al., 2015). The vulnerability with these 

natural risks is high in West Africa and Togo and Benin in particular, where the populations living 

in the Mono River Basin tend to occupy the most exposed zones, (Fernando, 2014). Ntajal (2016) 

has identified that most of the communities in the lower basin of Mono river were within a 500  

meter buffer zone while others such as Agbanakin, Togbavi, Azime Dossou, and Adame were 

found within 100 m, which could increase their exposure to flooding, (Ntajal, 2016), Figure 1. 

From the section 1.1; It has been shown that Mono River Basin is getting flooded each year and 

the areas located in the downstream suffer the impact of its overflow. Past and recent scientific 

researches undertaken in the Basin focused more on Flood characteristics, flood risk and 

vulnerability (Ago et al., 2005; Amoussou, 2010; Fernando, 2014; Ntajal, 2016).  
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Figure 1. Flood hazard map of the Lower Mono river basin (Lacs district), (Ntajal, 2016) 

However, little work has been focused on the impacts of climate change. For instance, Houngue 

(2018) investigated the impact of climate change on Mono river inflow while Lamboni et al. (2019) 

assessed the rainfall trends and changes over Mono River Basin using Africa- CORDEX regional 

climate models under  the Representative Concentration Pathways, RCP 8.5. Ntajal (2016) 

evaluted the flood risk in the lower Mono River. His findings also showed that the lower part of 

Mono River Basin is likely to be mostly affected by 2-year and 5- year flood. None of these studies 

performed flood frequency analysis of annual maximal discharge derived using climate scenarios 

and hydrological model. This research comes to fill this gap by applying the HBV-light model 

(Hydrologiska Byråns Vattenbalansavdelning), to assess the impact of climate change on flood 

frequency and magnitude, using two West African Science Service Center on Climate Change and 
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Adapted Land Use (WASCAL) climate model output (GFDL-ESM2M and HadGEM2-ES under 

RCP 4.5).  

1.3. Research Objective 

1.3.1. Main Objective 

The overall objective of our research is to evaluate the impact of climate change on water balance 

components and flood hazard in Mono River through rainfall - runoff modelling.  

1.3.2. Specific objectives 

The specific objectives are to: 

 Calibrate and validate the hydrological model HBV for the Lower Mono river basin;  

 Evaluate the climate change signal on water balance components in the Mono river; 

 Assess the impact of Climate Change (CC) on flood frequency and magnitude in the Mono 

River. 

1.4. Research questions 

Based on the stated objectives, the following questions have been used to guide the research 

process and finally answered from the findings of the study: 

 How well could the HBV model perform in simulating discharge over the Lower Mono 

River? 

 What could be the signal of climate change on water balance components of the lower 

Mono River?  

 How does climate change impact on flood frequency in  Mono, lower basin? 

1.5. Relevance of the study 

The Fifth Assessment Report (AR5) by the Intergovernmental Panel on Climate Change (IPCC, 

2014) highlighted that flooding in West Africa are expected to increase by 20% over the next 

decades relative to the past (1986-2005) due to the impact of climate change which is likely to 

become more severe by 2050. It is thus, understood that flood risks in Mono River Basin will not 

subside in the future (Lamboni et al., 2019). This study is therefore welcome to assess the local 

beheviors of climate change impact on flood hazard in Mono lower Basin. It is also a step forward 

for better management of flood in the region. As Mono Basin is one the largest Basin shared 

between both Benin and Togo countries, the output of this study will also help stakeholders and 

decisions makers to plan and adopt strategies in order to prevent or to mitigate the incoming impact 

of flood in both countries through the Mono River Basin. 
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1.6. Thesis Outline 

The outline of this thesis report is composed of five chapters and is as follows: 

 The first chapter provides the introduction of this study: it includes the background, the 

problem statement, the objectives of the study, the research questions and justification of 

the study. 

 The second chapter provides a literature review which illustrates the state of the art as 

far as studies climate impact on flood are concerned. 

 The third chapter presents the description of the study area.  

 The fourth chapter provides research methodology, the data used for this study with 

discussion on their pre-processing. 

 The fifth chapter presents the results and discussion. 

 The sixth chapter provides a conclusion and few suggestions. 
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CHAPTER TWO 
 

2. LITERATURE REVIEW 

2.1. Hydrological modeling 

2.1.1. A general overview of Hydrological modeling 

A model can be defined as a simplified representation of a real-world system (Gayathri, 2015). 

Models are used for predicting system behavior and understanding various hydrological processes. 

The model giving results close to reality with the use of the least parameters is the best one. 

Hydrological models are an important tool for water and environment resource management. 

A large number of hydrologic models are available today with varying degrees of data 

requirements that may be used for purposes such as estimation of flood runoff, routing of flood 

hydrographs, and assessment of flood inundation, which may be done with a GIS interface 

(Icyimpaye, 2018).  

Hydrological modeling is the use of physical or mathematical techniques to simulate the 

hydrologic cycle and its effect on a watershed. The purpose of using a model is to establish baseline 

characteristics whenever data is not available and to simulate long-term impacts that are difficult 

to calculate (Mkilima, 2018). 

Hydrologic models attempt to simulate the rainfall-runoff process to tell us “how much water, how 

often”. They use rainfall information or simulations to provide runoff characteristics including 

peak flow, flood hydrograph and flow frequencies (Georgia stormwater Management Manual G-

1). The hydrological model can be classified as a lumped and distributed model based on the model 

parameters as a function of space and time; deterministic and stochastic models based on the other 

criteria (Gayathri, 2015). 

In lumped models, the entire river basin is taken as a single unit where spatial variability is 

disregarded. The output is then generated without considering the spatial processes. As for a 

distributed model, it can make predictions that are distributed in space by dividing the entire basin 

into small units, mostly square cells or triangulated irregular network, therefore the parameters, 

inputs, and outputs can vary spatially.  

The semi-distributed models account for spatial variations in some processes while ignoring them 

in others by dividing the basins into a number of smaller sub-basins. On the time scale, the models 

may be discrete or continuous time models. 
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With the deterministic model, the same output is obtained for a single set of input values while in 

stochastic models, different values of output can be produced for a single set of inputs. 

One of the most important classifications is an empirical model, conceptual models and physically 

based models (Gayathri, 2015). 

 Empirical models also called data-driven models are observation oriented models which 

take only the information from the existing data without considering the features and 

processes of the hydrological system. Artificial neural network and fuzzy regression, are 

some of the empirical models. 

 The conceptual model describes all of the component hydrological processes. Semi-

empirical equations are used in this model and the parameters are assessed from the field 

data and through calibration. A large number of meteorological and hydrological records 

is required for calibration. HBV model and TOPMODEL are some examples of this model. 

 Physically based model is a mathematically idealized representation of the real 

phenomenon. It does not require extensive hydrological and meteorological data for their 

calibration but the evaluation of a large number of parameters describing the physical 

characteristics of the basin are required. This model requires a huge amount of data such 

as soil moisture content, initial water depth, topography, topology, dimensions of the river 

network, etc. are required. SHE or MIKESHE model and SWAT are some of this model. 

2.1.2. Brief description of the HBV model and applications  

As the main goal of the hydrological modeling in this research is to simulate peak flow, any model 

which can simulate that characteristic of Mono river could be used. However,  this study used, 

HBV-light model (Hydrologiska Byråns Vattenbalansavdelning, (Seibert, 2005),  version 4.0.0.22 

which has many characteristics among which simple structure, conceptual, lumped, requires a 

moderate amount of input data. HBV is part of IHMS (Integrated Hydrological Modeling System) 

and is used for hydrological prediction, discharge simulation, and flood analysis under climate 

change (Houngue, 2018). The HBV-light is a conceptual, lumped model of basin hydrology which 

simulates daily discharge using daily rainfall, temperature and estimates of potential 

evapotranspiration (PET) as input data (Radchenko, 2016).In-depth details and descriptions on the 

model are available (Harlin, 1992; Lindström & Harlin, 1992; Seibert, 1997).  

The HBV model (Bergstrom 1976) has been applied in numerous studies, e.g., to do hydrological 

forecasts, for the computation of design floods or for climate change studies (Bergstrom 1992). 
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Many ongoing researchers are there on topics like which model will give more compatible results 

with that of observed discharges.  Gayathri (2015) made a review on hydrological models such as 

Variable Infiltration capacity model (VIC), TOPMODEL, HBV, MIKESHE and Soil and Water 

Assessment Tool (SWAT) model. His findings show that HBV model can be used for flood 

forecasting and many other purposes. 

Grillakis et al. (2010) also used the HBV model in a flash flood case in Slovenia and it gives 

satisfactory results, the coefficient of determination r2 ranged between 0.86 and 0.92; The 

coefficient of efficiency, Reff varied from 0.82 to 0.90 during calibration; as for validation, r2 varied 

between 0.58 and 0.79 , and Reff  ranged from 0,69 to 0.90 . Radchenko (2016) used HBV-light 

model to study “Impact of climate change on the contribution of second order tributaries to the 

water balance of the Ferghana Valley”. His findings show that “the HBV-light model is 

successfully applied in the study area and it shows the capability to capture the main peaks of 

discharge and to simulate the base flow both for generated and measured temperature data, as well 

as to reproduce the observed discharge time series”. 

HBV model has been also used in Benin for different researches. Among them, Bormann and 

Diekkrüger (2003) applied the HBV model to predict discharge in the Upper Ouémé Basin. The 

model was also used in the Mekrou Basin to simulate various parts of hydrograph over the period 

2004- 2011 (Gaba et al., 2015). The impact of climate change on blue and green water in the Niger 

River Basin, Benin was assessed using HBV-light model (Badou, 2016). 

Houngue, (2018) also used HBV-light while assesing the impact of climate change on Mono River 

discharge by 2050. The hydrological model, HBV-light was used to simulate future discharge 

using the projections from the regional climate model REMO, under RCP4.5 and RCP 8.5. The 

coefficient of efficient of  efficient was 0.79 during calibration and 0.67 during validation while r2 

reached 0.83 and 0.73 respectively in calibration and validation.These values  study showed that 

HBV-light is able to well-simulate discharge in the Mono Basin over the period 1980- 2010 and 

2018 -2050. 

 

 

 

 HBV-light model structure 
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As shown by figure 2 and figure 3, the model includes four different routines: snow, soil, 

groundwater (response function) and routing. The snow routine is based on a degree-day method, 

where precipitation is considered to be rain or snow with respect to a threshold temperature, TT 

(°C) (Lindström et al. 1997; Seibert and Vis 2012; Seibert et al. 2000). The soil routine simulations 

depend on actual evaporation and water storage properties (Seibert et al. 2000; Seibert 1997). The 

groundwater routine is governed by percolation rate (PERC) and recession coefficients (K1, K2), 

(Seibert 1997; Seibert and Vis 2012). Finally, the runoff generation is characterized by the shape 

of a triangular weighting function (Lindström et al. 1997; Seibert et al. 2000). 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. The general structure of HBV model  
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Figure 3. The schematic model structure 

The four sub-models of HBV-light  deal with different aspects of water balance. 

Table 1, summarized the input and output data as well as the parameter of each routine. 

The response function is built upon a single linear reservoir model. where the runoff Q(t) at time t 

is supposed to be proportional to the water storage S(t). 

Q(t) = 𝐾 ∗ 𝑆(𝑡)                                                                                                                             (1)     

Where Q (t) is the runoff at time t, S (t) the water storage,  K is the storage (or recession) coefficient 

and t is the time  

S(t) = 𝑆𝑃 + 𝑆𝑀 + 𝑆𝑢𝑧 + 𝑆𝑙𝑧 + 𝐿𝑎𝑘𝑒𝑠                                                                                         (2) 

Where SP is the snow pack, SM the soil moisture, Suz upper groundwater zone, Slz lower 

groundwater zone and Lakes the volume of lakes. 

The water balance of the Basin is given by:  

P(t) = E(t) + Q (t) + 
𝑑𝑠(𝑡)

𝑡
                                                                                                              (3) 

Where  P(t) is the precipitation, E(t) the evapotranspiration, Q(t) the runoff at time t. 

The general structure of HBV-light, considers the soil as divided into two boxes, the upper 

groundwater zone Suz, and the lower groundwater zone Slz, and the flow from groundwater boxes, 

QWG(t) is: 

QWG(t)= K2.Slz + K1.Suz +K0.max (Suz –UZL,0)                                                                      (4
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Where Slz is the recharge added to the lower groundwater box, Suz the recharge added to the upper 

groundwater box, ULZ a threshold parameter, K0, K1, K2 the storage (or recession) coefficient. 

Then, the simulated streamflow, Qsim, is obtained by applying a triangular weighting function 

defined by the parameter MAXBAS. 

Qsim (t)= ∑ 𝑐(1). 𝑄𝑤𝑔(𝑡 − 𝑖 + 1)𝑀𝐴𝑋𝐵𝐴𝑆
𝑖=1                                                                                        (5) 

Where c(i)=∫
2

𝑀𝐴𝑋𝐵𝐴𝑆
 − |𝑢 −

𝑀𝐴𝑋𝐵𝐴𝑆

2
| 

𝑖

𝑖−1
.

4

𝑀𝐴𝑋𝐵𝐴𝑆2
du                                                                  (6) 

Table 1. HBV-light sub- models, (Houngue, 2018) 

Sub-model Imput data Output data Parameter 

Snow routine 
Precipitation; 

Temperature 

Snow pack;           

Snow -melt 

 

TT= treshold temperature (°C);    

CFMAX= degree-∆t factor (mm °C                

; SFCF = snowfall correction factor (-); 

CFR= refreezing coefficient (-);          

CWH= water holding capacity (-)  
 

Soil Routine 

Potential 

evapotranspiration

; Precipitation; 

Snowmelt 

Actual 

evapotranspiration

; Soil moisture; 

Groundwater 

recharge 

FC= maximum soil moisture storage (mm); 

LP= soil moisture value above which AET 

reaches PET (mm);                                  

BETA= parameter that determines the 

relative contribution to runoff from or 

snowmelt (-) 

Response 

function 

Groundwater 

recharge; Potential 

evapotranspiration 

Runoff; 

Groundwater level 

 

PERC= threshold parameter (            ; 

Alpha= non-linearity coefficient (-);                          

UZL= threshold parameter (mm);                

K= storage (or recession) coefficient (  
 

Routing 

routine 
Runoff Simulated runoff 

MAXBAS= Length of triangular weighting 

function ( 

 

 

 

 

 

 

∆𝑡−1  ) 

∆𝑡−1  ) 

∆𝑡   ) 

∆𝑡−1  ) 
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Among the 14 parameters which HBV-light has, only 8 are taken into consideration in this 

study, because the remaining five govern the snow routine and are not relevant for Mono Basin. 

The same number of parameters were considered in the study of “assessment of mid-century 

climate change impacts on mono river’s downstream inflows” (Houngue, 2018). 

 

2.1.3. Data processing and Model set-up 

2.1.3.1. Data requirement 

The reliability of hydrological models is highly dependent on the calibration procedure, which is 

the search for one optimal parameter set (Gayathri, 2015). 

HBV model requires some data files which should be prepared before inputting them in the model. 

Those data files are PTQ-files and Evaporation-file. 

- PTQ-files: The PTQ-file contains time series of daily precipitation (mm/day), temperature 

(°C) and discharge (mm/day), (Seibert, 2005). 

- Evaporation-file: The evaporation-file contains values for the potential evapotranspiration 

(mm/day). The evaporation file may contain 12 values, i.e. long-term monthly mean values 

or 365 values, i.e. long-term daily mean values, (Seibert, 2005). 

2.1.3.2. Calibration 

The model calibration is a systematic process of adjusting the model parameter values until model 

results match acceptably with the observed data. This involves obtaining the best match between 

the observed and the computed discharge hydrographs. 

The calibration of a conceptual model such as HBV model, basically follows two approaches:  the 

first is usually made by a manual try and error technique while the second is an automatic fitting 

using an optimization algorithm.  

Some automatic calibration tools are available in HBV model: Monte Carlo runs and the genetic 

calibration algorithm (GAP optimization). The latter is used in this study for model calibration. 

During the calibration, relevant parameter values are changed until an acceptable agreement with 

observations is obtained. 

Some criteria can be applied to analyze the fit of simulated discharge or runoff to the observed one 

(Bergström, 1992):  

- Visual inspection of plots with  Simulated discharge (Qsim) and Observed discharge 

(Qobs) 
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- Accumulated difference:  it is a graph of the accumulated difference between the simulated 

and the record discharge or runoff which reveals any bias in the water balance and is 

particularly useful in the initial stage of calibration, for example for assessment of snow-

fall corrections. 

- Statistical criteria, normally the Reff
 –value according to Nash and Sutcliffe (1970). 

The coefficient of efficiency, Reff, is normally used for assessment of simulation by the HBV model 

(Bergström, 1992). Reff is the objective function used for the HBV model calibration in the present 

work. 

Reff =1- -
∑(𝑸𝒔𝒊𝒎 (𝒕)−𝑸𝒐𝒃𝒔(𝒕))

𝟐

∑(𝑸𝒐𝒃𝒔(𝒕)−𝑸𝒐𝒃𝒔̅̅ ̅̅ ̅̅ ̅)̅𝟐                                                                                                                                (7) 

Reff compares the prediction by the model with the simplest possible prediction, a constant 

value of the observed mean value over the entire period. 

Reff =1, Perfect fit, if the simulation and the observations agree completely;  

QSim (t) = QObs (t).                                                                                                                     (8) 

Reff =0, Simulation as good (or poor) as the constant –value prediction if the model does not 

perform any better than the mean value of the discharge record. 

Reff <0, Very poor fit, if the model performance is poor or poor data is used. 

2.1.3.3. Model Validation 

It is the process of testing the ability of the model to simulate observed data other than that used 

for calibration, with acceptable accuracy. In other words, the validation tests the performance of 

the model with calibrated parameters for an independent period.  

2.1.3.4. Performance evaluation of the model 

Various goodness of fit functions is available in HBV-light model: 

- Reff: model efficiency 

- ReffWeighted: Efficiency based on weighted Q 

- LogReff: Efficiency for log (Q) 

- r2: coefficient of determination 

- MeanDiff: Mean difference 



 

28 

 

- VolumeError: Volume error 

- FlowWeightedReff: Flow-weighted efficiency 

- Kling-Gupta efficiency (KGE) 

Among them, efficiency criteria frequently used for hydrological applications and flow 

comparisons such as Nash-Sutcliffe efficiency,  coefficient of determination ( Grillakis et al.,2010) 

were used for this study.  

In addition, Kling-Gupta efficiency was also taken into consideration. In fact, taking into account 

multiple objectives can reduce simulation uncertainties and provides more reliable predictions. 

The Kling-Gupta model efficiency is in line with the paradigm of using many objectives during 

the calibration of the model in order to prevent the overfitting of model parameter to a particular 

hydrograph aspect (Pool et al., 2018). 

Therefore, these criteria are used to evaluate the model simulations during the calibration and 

validation periods.  

- Coefficient of determination r2: it is defined as the squared value of the coefficient of 

correlation according to Bravais-Pearson ((M G Grillakis et al., 2010). The coefficient of 

determination indicates the correlation between the observed and simulated values.  It is 

calculated as follows: 

r2 = 
(∑(𝑸𝒐𝒃𝒔−𝑸𝒐𝒃𝒔̅̅ ̅̅ ̅̅ ̅)(𝑸𝒔𝒊𝒎−𝑸𝒔𝒊𝒎)̅̅ ̅̅ ̅̅ ̅̅ ̅)

𝟐

∑(𝑸𝒐𝒃𝒔−𝑸𝒐𝒃𝒔)̅̅ ̅̅ ̅̅ ̅̅ ̅𝟐 ∑(𝑸𝒔𝒊𝒎−𝑸𝒔𝒊𝒎)̅̅ ̅̅ ̅̅ ̅̅ ̅𝟐                                                                                              (9) 

- The efficiency E (Reff):  proposed by Nash and Sutcliffe (1970) is defined as one minus 

the sum of the absolute squared differences between the predicted and observed values 

normalized by the variance of the observed values during the period under investigation. E 

measures how well the plot of the observed against the simulated flows fits the 1:1 line.  

The range of E lies between 1.0 (perfect fit) and -8. A result lower than zero indicates that 

the mean value of the observed time series would have been a better predictor than the 

model. It is calculated as shown in formula 1, section 2.3.1. 

- Kling-Gupta efficiency (KGE): it provides a way to achieve balanced improvement of 

the simulated mean flow, flow variability (high flow estimates), and daily correlation 

through. KGE is a weighted combination of three components that appear in the theoretical 

NSE decomposition formula and showed that this formulation improves flow variability 

estimates (Mizukami et al., 2018). 
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KGE is expressed as: 

KGE =1 -√{𝑆𝑟(𝑟 − 1)}2+{𝑆𝛼(𝛼 − 1)}2+{𝑆𝛽(𝛽 − 1)}2                                                          (10) 

Where, α= 
𝜎𝑠

𝜎𝑜
 ,  𝛽 =

𝜇𝑠

𝜇𝑜
                                                                                                                            (11) 

where Sr, 𝑆𝛼 and  Sβ are user-specified scaling factors for the correlation (r), variability ratio (α), 

and mean ratio (𝛽) terms; 𝜎𝑠 and 𝜎𝑜 are the standard deviation values for the simulated and 

observed responses respectively, and 𝜇𝑠 and 𝜇𝑜 are the corresponding mean values. In a balanced 

formulation, Sr, 𝑆𝛼 and 𝑆𝛽  are all set to 1.0. By changing the relative sizes of the Sr, 𝑆𝛼 and 𝑆𝛽   

weights, the calibration can be altered to more strongly emphasize the reproduction of flow timing, 

statistical variability, or long-term balance (Mizukami et al., 2018). 

2.1.4. Areal precipitation 

There are different methods to compute the average rainfall in areas where more than one rain 

gauge is established: 

 Arithmetic average method 

 The weighing means method or Thiessen polygon method 

 Kriging method 

 Isohyetal method. 

In this study, Thiessen polygon and Kriging ordinary were considered. 

2.1.5.1. Thiessen Polygon method 

It is the weighted mean method. The rainfall is never uniform over the entire area of the basin but 

it varies in intensity and duration from place to place. The rainfall recorded by each rain gauge 

station should be weighted according to the area, it represents.The Thiessen polygon method is 

more suitable under the following conditions:  for areas of moderate size; when rainfall stations 

are few compared to the size of the basin; in moderate rugged areas. The following procedure is 

used to apply thiessen polygon method: Draw the area concerned to a suitable scale, showing its 

boundary, locations of the rain gauges in the area and outside but close to the boundary; Join the 

location of the rain gauges to form a network of triangles; Draw perpendicular bisectors to the triangle 

sides. These bisectors form polygons around the stations; Delineate the formed polygons and 

measure their areas using a planimeter or by converting them into smaller regular geometric shapes 

(i.e.triangles, squares, rectangles, etc.). Compute the average rainfall using the following formula: 
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  Pav =
𝑃1𝑥𝐴1 + 𝑃2 𝑥𝐴2 +...+ 𝑃𝑛𝑥𝐴𝑛

𝐴1+𝐴2+⋯𝐴𝑛
                                                                                      (12) 

Where, Pav the average rainfall and A1, A2…An the area of each polygon 

2.2. Climate change 
2.2.1. Global Circulation Model 

Global or general circulation models (GCM) are large scale numerical models of the atmosphere 

and ocean circulation. They use hydrodynamic (Navier-stokes equations on Rotating sphere) 

with thermodynamics (radiation and latent heat) coupled together with atmospheric, ocean and 

other modeled aspects of the climate system to form a global climate model or earth system, 

model. 

GCMs simulates the Earth’s climate system over time to compute atmospheric water vapor, 

ocean temperatures, greenhouse gas concentrations, annual and daily solar heating and describe 

how these components interact with each other to create complex climate variability and change 

(ARCC, 2014). 

They are the main tools used to provide a  reasonably accurate representation of global and 

continental scale climate information on average daily, monthly, seasonal, annual and longer 

time scales used for forecast and projection of impacts of anthropogenic greenhouse gases 

(GHGs) and aerosols on future climate.  

2.2.2. Representative Concentration Pathways (RCP) 

The Representative Concentration Pathways (RCP) is the latest generation of scenarios that 

provide input to climate models. RCPs are time and space dependent trajectories of 

concentrations of greenhouse gases and pollutants resulting from human activities, including 

changes in land use. The four RCPS are: 

- RCP 8.5: High emissions: - consistent with a future with no policy changes to reduce 

emissions. Comparable SRES scenario: A1 F1 

- RCP 6: Intermediate emissions: - consistent with the application of a range of 

technologies and strategies for reducing greenhouse gas emissions. Comparable SRES 

scenario: B2. 

- RCP 4.5: Intermediate emissions: -  consistent with a future with relatively ambitious 

emissions reductions. Comparable SRES scenario: B1 

- RCP 2.6: Low emissions: - In order to reach such forcing levels, ambitious greenhouse 

gas emissions would be required over time. 
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2.2.3. An overview of  WASCAL Climate models 

WASCAL is a big research-focused Climate Service Centre in West Africa that enhances the 

resilience of human and environmental systems to climate change and increased variability in the 

region of West Africa. Within the framework of the West African Science Service Center on 

Climate Change and Adapted Land Use (WASCAL), an ensemble of high-resolution regional 

climate change scenarios for the greater West African region is provided to support the 

development of effective adaptation and mitigation measures. Three regional climate models 

(WFR V 3.5.1, COSMO-CLM 4.18, REGCM4) and three earth system models from the CMIP5 

project are downscaled by each of the regional models, MPI-ESM, GFDL-ESM2M and 

HadGEM2-ES over the period of 1980 - 2010.  

GFDL-ESM2M and HadGEM2-ES data were downloaded from the Earth System Grid Federation 

(ESGF) in netCDF format. For GFDL-ESM2M and HadGEM2-ES data, a separate tool were 

implemented  to convert the netCDF data directly into the WPS intermediate format (“un-netcdf”), 

thereby avoiding the problem of an unsupported 360-day calendar in the grib standard. 

To generate model output in a standard format, the latest developments in the WRF model were 

employed and extended further: WRFV3.5.1 provides the capability to interpolate model-level 

data to pressure levels during the integration. This capability was extended to include additional 

variables (in particular hydrometeors). Further, climate diagnostics such as minimum and 

maximum daily temperatures are calculated using the climate diagnostics features of the model. 

The GFDL-ESM2M and HadGEM2-ES models are based on a 365-day (no-leap year) and a 360-

day (12 × 30 days) calendar, respectively.Regional climate projections are generated at high 

(12 km) and intermediate (60 km) resolution using the Weather Research and Forecasting Model 

(WRF). The simulations cover the validation period 1980–2010 and the two future periods 2020–

2050 and 2070–2100. The high spatial and temporal resolution of the data, the extensive list of 

output variables, the large computational domain and the long time periods covered make this data 

set a unique resource for follow-up analyses and impact modelling studies over the greater West 

African region. 

 The Representative Concentration Pathways considered in the simulation is the RCP4.5 scenarios 

from 2020 to 2050 and from 2070 TO 2100. The choice of RCP4.5 was made because of limited 

computational resources and is based on the fact that the differences between RCP4.5 and RCP8.5 

become apparent only after 2040 (Heinzeller et al., 2018). The selected GCMs, on the other hand, 
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cover the extremes in temperature and precipitation of the ensemble of GCM forcing data used in 

CORDEX. The simulation outputs are provided at the resolution of 12km and 60km. It is covering 

all west Africa region from 25W to 25E and 5S to 25N (Heinzeller et al., 2018). 

2.2.4. Bias correction and Quantile mapping method 

Climate model output provides the primary source of information used to quantify the effect of the 

foreseen anthropogenic climate change on natural systems. One of the most common and 

technically sound practices in climate change Impact (CCI) studies is to calibrate impact models 

using the most suitable observational data and then to replace them with the climate model data in 

order to assess the effect of potential changes in the climate regime (Grillakis et al., 2017). Raw 

climate model data cannot often, be used in CCI models due to the presence of biases in the 

representation of regional climate (Christensen et al., 2008). Hydrological Climate Change Impact 

studies results have been reported to become unrealistic without a prior adjustement of climate 

forcing bias (Hagemann et al., 2013; Harding et al., 2014; Ines & Hansen, 2006; Sharma et al., 

2007). These biases are attributed to a number of reasons such as the imperfect representation of 

the physical processes within the model code and the coarse spatial resolution that does not permit 

the accurate representation of small-scale processes. A number of statistical bias correction 

methods have been developed and successfully applied in CCI studies (Grillakis et al., 2013; Ines 

& Hansen, 2006; Teutschbein & Seibert, 2012). Their objective is to adjust the statistical properties 

of climate simulations to resemble those of observations, in a common climatological period. A 

commonly used procedure to achieve this is a transfer function (TF) which minimizes the 

difference between the cumulative density function (CDF) of the climate model output and that of 

the observations, a process also referred to as quantile mapping. As a result of quantile mapping, 

the reference (calibration) period’s adjusted data are statistically closer, and sometimes near-

identical to the observations. 

The quantile mapping method (Gudmundsson et al., 2012; Ines & Hansen, 2006; Themeßl et al., 

2011; Wood et al., 2004) is a relatively simple approach that has been successfully used in 

hydrologic and climate impact studies (e.g., Brocca et al., 2011; Cayan et al., 2008; Hayhoe et al., 

2004; Maurer & Hidalgo, 2008). In the Niger river basin (West-Africa), Oyerinde (2016) used 

quantile mapping for precipitation and delta-change for temperature data from 8 RCMs, and 

concluded the methods as suitable for improving the data. In the Ouémé basin (Benin), N’Tcha 

M’Po et al., (2016) investigated the linear scaling, the delta approach and the quantile mapping 
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methods for correcting precipitation data from 4 RCMs and stated that empirical and adjusted 

quantile mapping are the most effective. Teutschbein and Seibert, (2012)  proved that compared 

to other bias correction method, quantile mapping performs best in terms of hydrological annual 

maximum simulations. The same conclusions have been drawn by Themeßl et al., (2011) who, 

comparing several downscaling approaches, indicated the quantile mapping method as the most 

efficient in removing precipitation biases, also for the tails of the probability density function. 

Through the quantile mapping, the mapping of the Global Circulation Model cumulative 

distribution function (CDF) of the variable of interest onto the observed CDF is done. 

2.3. Flood Frequency analysis 

2.3.1. An overview of Flood frequency analysis 

Flood frequency analyses enable predictions of possible flood magnitude over a certain period and 

to estimate the frequency with which floods of a certain magnitude may occur. The flood frequency 

analysis is one of the important studies of river hydrology, which could be conducted based on 

maximum instantaneous flow (Ntajal, 2016). 

There are three steps in frequency analysis (Khaliq et al., 2006) 

 selecting a suitable Probability Distribution Function (PDF);  

 estimating the parameters of PDF based on samples; 

 assessing the uncertainty of objective of interest in prescribed confidence level. 

Flood frequency analysis is the procedure of obtaining the relationship between flood quantiles 

and their non-exceedance probability using extreme value theory.  

The magnitude of the T-year flood at a site is the amount of streamflow that has a probability 1/T 

of being exceeded in any one year. 

 Using either the Annual Maximum Series (AMS) or Peak Over Treshold (POT) methods/ 

Partial Duration Series (PDS), a selection of values from the streamflow series can be 

considered peak events (Claps & Laio, 2003). 
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Figure 4 presents the general approach in flood frequency analysis using streamflow series. 

 

 

 

 

 

 

 

 

Figure 4. Flood frequency analysis flow chart 

In this study, one of the most common approach used, Annual Maximum series were applied to 

select the peak from the streamfow times series. 

2.3.2. Probability distribution 

For accurate hydrologic analysis of flooding there are different probability distributions method 

used to estimate extreme rainfall such as Beta –P; Generalized extreme value(GEV), Gumbel, 

Weibull, Beta-k, Generalized Logistic (GLO), Generalized Pareto(GPA), Log-Pearson Type III, 

Pearson Type III and Generalized Normal,GNO, (Icyimpaye, 2018). 

The generalized extreme value (GEV), of which extreme value type I (EV I), EV II, and EV III 

are special cases, and the generalized Pareto distribution (GDP) are frequently used when 

analyzing data in the context of extreme value theory (Ghorbani, Ruskeep, Singh, & Sivakumar, 

2010). The EV I or Gumbel distribution is commonly used for the distribution of annual maxima 

of streamflows, though the Person type 3 or log-normal is also common. It is indeed the most 

widely used distribution to model extremes in hydrology (Koutsoyiannis, 2004). The EV III 

distribution is used for annual low flows.The most common approaches are the annual maximum 

series (AMS) method and the Peak-over-threshold (POT) or Partial duration series (PDS) method. 

Among the many probability distributions, the ones that are commonly used are Pearson type III, 

Weibull, Generalized Extreme Value distributions, Gumbel which seem to adequately fit peak, 

rainfall and stream-flow (Ghorbani et al., 2010). 

Streamflow time series 

Peak selection using Peak Over Treshold 

(POT)/Annual Maximum Series (AMS) 

Identification of model for extreme value 

distribution 

Estimate parameters of distribution and 

design flood 
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2.3.3. Parameter Estimation Method 

There is a multitude of methods for estimating parameters of hydrologic frequency models. Some 

of the popular methods used in hydrology include 

- method of moments; 

- method of probability weighted moments; 

- method of mixed moments; 

- L-moments; 

- maximum likelihood estimation; 

- least squares method. 

Extensive details of these methods are already available in the literature (e.g., Rao & Hamed, 2000; 

Singh, 1996) and, therefore, are not reported here. Only two 2 of these methods are employed: 

maximum likelihood estimation and the method of moiments. There is no specific reason for 

preferring these 2 methods against the others, except that they are simple and also sufficient for 

the purpose of this study. They are neither treated as superior to the other methods nor any effort 

is made compare with them.  Parameter estimation methods commonly used are the method of 

moments, probability-weighted moments or   L-moments, or maximum likelihood. 

2.3.4. HYFRAN Software 

The HYFRAN software is designed for Hydrological Frequency Analysis (HFA) especially for 

extreme value. HYFRAN sotware version 1.1 (Salaheddine & Bobée, 2015) is the one used in this 

study. It is a tool developed by Canadian Developer used  to  fit statistical distributions (Alib et 

al., 2016).  For flood analysis, the  maximum annual flow is often considered. However, HYFRAN 

allows to fit different statistical distributions ( 

Figure 5), to any dataset of extreme values in areas with different time steps, provided that 

observations are Independent and Identically Distributed (IDD). The “comparison” option allows 

to compare several fittings to choose which is the most adequate to represent the studied dataset. 

The fittings can be compared using criteria or graphics. 

Graphic: It is possible to compare the results of several different fits (2 or 5) using either Normal 

or Gumbel probability paper. 

Criteria: Two criteria are available, these are the Akaike (AIC) and Bayesian information Criteria 

(BIC) ( see Ehsanzadeh et al., 2010).Criteria can be reliably used in climate statistics to assist in 

finding the best distribution to use to fit the given data. These tests describe the differences between 
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the observed data values, and the expected values from the distribution being tested (Millington, 

Das, & Simonovic, 2011). 

Model selection is performed by looking for the minimum AIC and BIC values. The probability 

distribution recording the lower AIC and BIC is the best fitting the data series (Giuliano, Laio, & 

Montanari, 2009). 

AICj = −2𝑙𝑛 (𝐿𝑗) + 2𝑝𝑗                                                                                                            (13) 

Where pj is the number of estimated parameters, and Lj is the likelihood function  and n is the 

sample size. 

The Bayesian criterion (BIC) is based on the discrepancy between the model and the parent 

distribution in a Bayesian framework (Schwarz, 1978). BIC can be computed according to the 

following relationship: 

BIC =−2 𝑙𝑛(𝐿𝑗) + 𝑙𝑛(𝑛)𝑝𝑗                                                                                                      (14) 

 

Figure 5. Hyfran fitting menu 
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CHAPTER THREE 

 3. STUDY AREA 

This section describes briefly the characteristics of the study area which include basin location, 

population and economics activities; topography, vegetation and soil and the climate.  

3.1. An Overview of the Basin 

The Mono river basin is located in the Gulf of Guinea region and is shared between Benin and 

Togo. The upper and middle parts of the basin are largely located in Togolese territory and the 

lower course lies between Togo and Benin (figure 6). 

Figure 6. Location of Mono River
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A hydroelectric dam called Nangbeto is installed on the Mono River Basin. The study is conducted 

in the Lower part of the Mono River Basin. As the largest river in Togo, and occupying an area of 

23.119 km2, Mono river extends over 560 km from north to south and more precisely between 06 

° 16 'N and 09 ° 20'N and  0 ° 42 'E and 2 ° 25'E (Amoussou, 2010). It is managed by both Republics 

of Benin and Togo which have come together to form Mono River Basin Authority for efficient 

management of water resources over the Basin. The River takes its source water from Atakora 

table ranges (Mount Togo) at an altitude of about 400 m, the eastern side of the Central region of 

Togo (Fernando, 2014). Almost every year, people living within the Basin are usually flooded 

such as Aklakou-Zongo, Avévé, Kpondavé, Adamé, Agbanakin among other villages located in 

the lower part of Mono River (Ntajal, 2016). 

 3.2. Population and Economics activities 

Agriculture is the main activity carried out in the Mono River Basin with a majority of the people 

living practicing subsidence farming. This activity is vulnerable to extreme climate events such as 

drought and flooding. 

 According to the report of WAEMU in 2006, the populatin of the basin is more than two million, 

with an annual increase of 2.9%. This population is at high densities in the south of the basin and 

has rainfed agriculture as main activities ; while those in the lower part, fishing and salt farming 

are the major activities (Amoussou, 2015; Lamboni et al., 2019). 

3.3.  Topography, Vegetation, and Soil 

The Mono Basin has a coastal sedimentary basin at the south, modeled in littoral plain and plateaus 

and highest reliefs in the north including the Atacora mountains and their southern extensions, the 

mountains of Togo. 

The lower basin of Mono has a smooth topography due to its partial recovery by sandy-clay 

alluvium. However, it presents the various levels which undoubtedly mark levels of erosion 

recovery (Amoussou, 2010). The redistribution of water on the continental surface is highly 

constrained by geomorphology and surface properties (permeability of soil and subsoil, nature and 

density of vegetation, etc.). The Basin is formed by hydromorphone soils which are rapidly 

saturated of water. The sand contents decrease, depending on the closeness of the area to the river. 

The geology consists of the continental shelf called the terminal plate which extends from Kouvé 

area to the north-western of Sedome. 
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The soils in the lower part of Mono River Basin are made up of clay (60%) and sandy clay (40%). 

Areas which are composed primarily of these types of soils are prone to a higher flood risk because 

the water requires a longer time to drain or infiltrate into the ground (Ntajal, 2016). 

The vegetation is composed of dense forests, savannahs, fallows, crop fields, coconut, grasses and 

scattered mangoes that rather serve as firewood for some surrounding communities due to 

increasing demand for fuelwood. 

Land use and land cover for the Lower Mono Basin are classified in four groups: Built-up 

areas/bare soils, coconut and palm plantations, swampy areas, with scattered mangroves                     

(Figure 7). The fauna consists of mammals (buffalo, warthogs, monkeys, deer, agouti, etc.) and 

various birds of prey, aquatic life, crocodiles and hippos. 

 

 

Figure 7. Land use/land cover classification using 2010 Landsat 7 ETM+ image (30 m; Path/Row: 198/52), 

(Ntajal, 2016)
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3.4.  Climate 

Mono Basin’s climate varies from tropical to savanna. It is controlled by the interaction of two air 

masses; the influence of which varies all over the year with the north-south movement of the 

Intertropical Convergence Zone (ITCZ). Hot and dry continental air masses originating from the 

high-pressure system above the Sahara Desert give rise to dusty Harmattan winds throughout most 

of West Africa from November to February. Moist equatorial air masses originating over the 

Atlantic Ocean bring annual monsoon rains during summer (Lamboni et al., 2019). The Lower 

Mono River Basin climate is classified as tropical savannah with a subtropical forest bio-zone. 

Two types of rainfall regimes are observed in the basin. In the southern basin, (from 6˚16'N to 

7˚30'N) there are two rainy seasons which extend from mid-March to mid-July and from mid-

August to October. In the northern part of the basin (from 7˚30'N to 9˚20'N), there is one rainy 

season which extends from April to October (Amoussou, 2010; Ntajal, 2016). The maximum 

annual rainfall is 1405,47 mm from 1983 to 2010 and the minimum total annual is 840, 56 mm 

(Figure 8). 

 

 

 

 

 

 

 

Figure 8. Inter-annual rainfall variability  for the period 1983 to 2010 

The mean annual maximum temperature is 27.95 °C (2010) for the whole basin while the daily 

maximum temperature ranges from 22 °C to 32°C between 1983 and 2010, (Figure 9). 
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Figure 9. Mean annual temperature for the period 1983 to 2010 
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CHAPTER FOUR 
 

4. MATERIAL AND METHODS 

4.1. Data collection- Data sources 

This section provides a description of the data collected. In this study, only secondary data were 

collected from various sources and used for analysis (Table 2). Secondary data collected are 

climatic data (rainfall, temperature, relative humidity, solar radiation, and wind speed) and 

hydrological data (River flow data). These data were collected for the purpose of doing 

hydrological modeling as input to the HBV model. The DEM (30 m) for the study area was 

derived from USGS/NASA SRTM data and was in decimal degrees and datum WGS84. The data 

was downloaded from the CIAT-CSI website (available at http://srtm.csi.cgiar.org). 

Table 2. Description of input data 

Data type Description Source 

SRTM (DEM) Resolution (30 meters) CGIAR-CSI  

(http://srtm.csi.cgiar.org). 

Rainfall Data (mm) 1983- 2010 National Meteorological 

Service of BENIN and TOGO 

(DMN) 

Temperature (°C) 1983- 2010 Atakpamè, Bohicon and Savè  

stations; DMN Togo and 

Benin 

Mono River flow data (m3/s) 1983 - 2011 Athieme station,  Benin 

General Directorate of Water 

Relative Humidity (%), Wind 

speed (m/s) and Solar 

radiation (MJ/m2 .day) 

1970 - 2010 Bohicon and Savè stations,  

Meteorological Service of 

BENIN 

Evapotranspiration (mm/day) 1983- 2010 Atakpamè station; 

Meteorological Service of 

TOGO 

http://srtm.csi.cgiar.org/
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Daily observed Climatic data were provided by the National Meteorological Service of  BENIN 

and TOGO (DMN, Direction de la Météorologie Nationale) and hydrological data (discharge 

data) from Benin General Directorate of Water (DGEAU) for the period 1983 to 2010. 

Figure 10 shows the hydro-climatic stations where rainfall, temperature, discharge, relative 

humidity, solar radiation, wind speed data were collected by DGEAU and DMN Benin and Togo. 

 

Figure 10. Hydro-climatic stations of Mono Basin 

Rainfall data were obtained from 20 rain gauges within and around Mono basin (not farther than 

25 km).  

Temperature data were collected from three synoptic stations within the basin (Taligbo, 

Atakpamé, and Sokodé) and two other stations near the basin (Bohicon, Savè).   
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Relative humidity, Solar radiation and Wind speed were collected from two stations, Savè and 

Bohicon, near Mono basin for the period. These data were used to compute potential 

evapotranspiration at Savè and Bohicon stations using Eto Calculator. As for Atakpamè station, 

Evapotranspiration data was available at the  Meteorological Service of TOGO.  

 4.2. Hydrological modeling 

The availability of hydrological and climatic data promotes confidence in the hydrological 

modeling effort (Miller et al., 2012). Different types of data also make it possible to constrain the 

uncertainties in the predicted variables (Pappenberger et al., 2006),  leading to more accurate 

model results.The hydrological model selected for this study is the HBV model. The data required 

to set up the HBV model are:  areal precipitation, temperature, discharge and evapotranspiration. 

4.2.1. Data Processing for HBV Simulation 

This section explains the methods used for data processing. To calibrate and validate the model, 

there is a need for analyzing the collected set of data such as climatic data and Hydrological data. 

4.2.1.1.  Processing of Rainfall data 

First of all, visual interpretation was done. This showed  the data format and the way they were 

arranged for the 20 rainfall stations. The missing data were filled using data from the nearest 

stations. Microsoft office excel and R software were used to process rainfall data. R software was 

used to transform them into two columns, one for the years and the second for rainfall data. After 

transforming all stations data with R Software, there were combined in one table . Areal 

precipitation was then computed to prepare the PTQ file. 

 Areal Precipitation computation 

The rainfall is never the same over the entire basin but it varies spatially in intensity and duration. 

In order to be used in the HBV model, rainfall data for all stations were considered and spatial 

interpolation was done. This study considered Thiessen polygon and Kriging Ordinary methods. 

However, the output from kriging was used for HBV-light model set up as the one from thiessen 

polygon method was not suitable. 

 Thiessen polygon method (weighted mean method) 

Different steps were undertaken to develop the Thiessen polygon for the study area. Arc Gis spatial 

analyst tool was applied to computed the weighted coefficient. Firstly, rainfall stations were 

projected in the study area already delineated). By selecting “Analysis Tools, Proximity and Create 

Thiessen Polygon”, in Arc Toolbox, rain gauge’s locations were joined so as to form a network of 
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triangles.  Then perpendicular bisectors were drawn to the triangle sides. Thus, these bisectors 

formed polygons around the stations.The following formula was applied to compute the weighted 

coefficient for each station: 

Ci = 
𝐴𝑖 

𝐴𝑇
                                                                                                                                       (15) 

Where Ci is the weighted coefficient for each station, Ai the area of the corresponding polygon and 

AT the total area of the basin. The rainfall recorded at each station was weighted according to the 

area, it represents. To compute the areal precipitation, the following equation was applied: 

Pi = Ci*Ri                                                                                                                                  (16) 

where Pi is the weighted precipitation, Ci the weighted coefficient, and Ri the rainfall recorded at 

the ith station.To get daily areal precipitation for the basin, the following formula was applied: 

Pareal =∑ 𝑃𝑖20
𝑖=1                                                                                                                            (17) 

 where Pareal  is the Areal daily areal precipitation of our basin. 

 Kriging interpolation method 

The Kriging method presented a suitable result which was then applied to run the model. This also 

confirmed the work done by (Amoussou, 2015; Houngue, 2018), who applied the same method in 

the same basin. 

4.2.1.2.  Temperature data processing 

There were no missing values in temperature data collected at the three stations (Taligbo, 

Atakpame, and Sokode) located within Mono basin as well as at Bohicon and Savè stations. 

The arithmetic mean of the five stations was used by applying the following formula: 

Tmean = 
∑ 𝑇𝑖5

𝑖=1

𝑛=5
                                                                                                                              (18) 

where Tmean is the average daily temperature in Mono Basin, Ti the temperature recorded at the ith 

station and n the number of stations (n = 5, for the 5 stations used to compute our Tmean). 

4.2.1.3. Processing of River Flow Data 

Daily discharge data were required in the calibration processes to simulate discharge at the outlet 

of the basin and adjust the model parameters.  

First of all, a visual interpretation of Athieme discharge was done. It has been found that the 

discharge data contains numerous missing data. Using the Pivot table in Microsoft Excel office, 
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the percentage of missing data per year was determined. Especially, for the years 1995 and 2001 

observation data was not available. 

Only for the years 1988, 1989, 2009 and 2010, there were no missing data. As for, the years 1985, 

1990, 1991,1992, 1997, 1998 and 2000, the percentage of missing data was less than 20% while it 

was less than 60% for the years 1986 and 1987. These years could also be considered for 

hydrological modeling. 

4.2.1.4. PTQ file 

After processing rainfall (P), temperature (T) and discharge (Q) data, Microsoft office excel was 

used to put each variable in one column and the years (1983-2010) in another one. The discharge 

data were replaced by  “-99”. The PTQ file was saved in Text Document (.txt) files. 

 Evapotranspiration, ETo,  (Evap) file  

Evapotranspiration at Savè and Bohicon stations was determined using ETo calculator software, 

version 3.2 (FAO, 2012). For Atakpame station, Evapotranspiration data (ETo1) was available at 

the meteorological institute of Togo. It was computed using Hargreave – Samani’s formula 

(Hargreaves & Samani, 1982). To compute evapotranspiration for Bohicon and Savè stations as 

well as for the study area, missing data contained in relative humidity, solar radiation, and Wind 

speed were firstly filled using the mean arithmetic method for each station. For the missing days 

in a month, gaps were replaced by the average of days for that particular month.  As for a missing 

month in a year, the gap was filled by the average of that month in the time series. 

The mean of Temperature, Relative humidity, Solar radiation, and Wind speed for the two 

stations were computed and used as an input data in ETo calculator to get mean 

evapotranspiration (ETo2). The mean arithmetic of Atakpame’s evapotranspiration, ETo1, and the 

one obtained from the ETo Calculator, ETo2, were considered as the evapotranspiration of Mono 

basin (ETo). The Evap file was thus created. 

4.2.2. HBV model set-up 

Model calibration is a systematic process of adjusting the model parameter values in order to obtain 

the best fit between the observed data and simulated results as well as to get the reality within the 

range of accuracy defined by the efficiency criteria (Manyifika, 2015). Following the input data 

required by HBV-light model (2.1.3.1. Data requirement), PTQ (Rainfall, Temperature, and 

Discharge) and Evapotranspiration data were used in calibration and validation of the model.  

Firstly, the available data time series (1983-2010) were considered to run HBV-model in order to 
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identify years where the simulated hydrograph match well with the observed one. Those years 

(1986- 1992; 1985 and 2010) were then chosen for the calibration and validation periods. The 

period,1986 -1992 was split into calibration (1986 – 1990), and validation (1991 -1992) periods. 

The years 1985 and 2010 were also used for validation of the model. Besides, 1986-1990 (5 years) 

is only the large range of years which contains less missing discharge data (less than 20%) as well 

as years (1985, 1988, 1989,1990, 1991, 1992 and 2010) without missing data during rainy season 

(April – November). It also accounts for high discharge years, 1988,1989 and 1990 (Houngue, 

2018). 

During the calibration process, the model was initially run 10. 000, 50.000 and 70.000 times with 

broader parameter ranges to identify suitable parameter bounds for Mono basin. Afterward, 70,000 

model runs within these parameter bounds were used to derive behavioral parameter data. 

The parameter sets were treated as being behavioral in calibration and validation periods according 

to three goodness-of-fit criteria: The Nash Sutcliff efficiency (NSE), Coefficient of determination 

R2 and Kling- Gupta (see 2.1.3.2. Calibration and 2.1.3.4. Performance evaluation of the model) 

with needs to be ≥ 0.50 to consider the model efficient in simulating discharge. The same objective 

functions have been applied in other studies (Booij, 2005; M G Grillakis et al., 2010; Houngue, 

2018). 

The principle consisted of varying the parameters till a relatively good efficiency coefficient is 

obtained for the calibration period. These parameters were then used for validation periods. The 

hydrograph produced by the observed streamflow data and the one simulated were also compared 

to see if there are closed. In fact, HBV-light was automatically calibrated using the Genetic 

calibration algorithm GAP embedded in the model.  

4.3.  Evaluating climate change impact on water balance components  

Climate change impact on hydrological processes depends on the projected future climate  

scenarios provided by climate models (Maghsood, Reza, Bavani, Panahi, & Berndtsson, 2019). 

4.3.1. Data sources 

Daily climatic data ( Precipitation, Temperature minimal and maximal, relative humidity and Wind 

speed) were provided by two models (the Global Circulation model  GFDL-ESM2M and 

HadGEM2-ES ) under the Representative Concentration Pathway RCP 4.5 downscaled by Wascal   
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(Heinzeller et al., 2018) for the historical period 1980-2005 and two future periods (2020-2049 

and 2070-2099). 

4.3.2.  Data processing and evaluation 

To process and evaluate the output from GFDL-ESM2M and HadGEM2-ES models, the following 

procedure were used: 

Firstly, the simulated data by GFDL-ESM2M and HadGEM2-ES were processed using Microsoft 

excel software (Pivot table). The missing data were identified and gaps were filled in each data 

series using arithmetic mean method. Daily average temperature were computed using daily 

maximal and minimum temperature; then potential evapotranspiration were calculated with Eto 

calculator software version 3.2 for the simulated historical and future periods.The historical period 

were defined taking into account the time series of the observed  (1983- 2005) and model 

simulations data (1980-2005). Historical observed data (precipitation and temperature) were plot 

against model simulations to analyze the gap between both. This helps to verify the existence of  

bias. 

Secondly, in this study, the output (precipitation and temperature) from GFDL-ESM2M and 

HadGEM2-ES as well as computed potential evapotranspiration (Eto) was bias corrected using 

quantile mapping method ( see 2.2.4).  Quantile mapping code were written in R software for the 

bias correction.  The calibration period were chosen based on the reference period (1983-2005). 

The transfer function ( coefficient of correction) generated between the historical observed and 

simulated data were applied to the projected future data (2020-2049 and 2070-2099) for  

correction. Bias correction data were evaluated  by comparing corrected and uncorrected 

precipitation, temperature and potential evapotranspiration (Eto) respectively.  

 4.3.3. Future projected discharge simulation and climate change signal analysis 

Future discharge were firstly simulated using uncorrected and corrected climate data to obtain bias 

uncorrected and corrected discharge respectively. The trends in precipitation, temperature, Actual 

Evaporation and discharge were then analyzed with the bias corrected and uncorrected values in 

order to also assess the effect of the application of quantile mapping method on the climate trend 

in Mono basin.Climate change signal were determined by plotting data for the three range of years 

(1983-2005; 2020-2049 and 2070-2099) with the reference, historical period (1983-2005). The 

change signal were calculated using the following equation: 
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% Change = 
𝑭𝒊−𝑯𝒊

𝑯𝒊
∗ 𝟏𝟎𝟎                                                                                                                        (19) 

 where Fi is the future variable and Hi, historical variable. 

 4.4. Flood frequency analysis and detection of change due to climate change 

The analysis of the climate change impact on flood frequency represents an important issue for 

water resources management and flood risk mitigation. In frame of the present study, flood 

frequency was based on annual maxima discharges for the historical period (1983-2005) and future 

periods (2020-2049; 2070-2099) under the assumption that there are no changes in the features of 

the basin. The frequency analysis was applied to  discharges from GFDL-ESM2M and HadGEM2-

ES models.To achieve the frequency analysis, the following procedure were adopted. 

Annual maxima discharge were firstly extracted from the bias corrected discharge series. Then, 

four different distributions (Generalized Extreme Values, Weibull, Gumbel and Pearson type III) 

were fitted to the maximum annual discharges from each of three periods , and parameters of these 

distributions were estimated using the method of maximum likelihood and the methods of 

moments. Calculations were performed with HYFRAN Software version 1.1 (Salaheddine & 

Bobée, 2015). The procedure consisted of computing for each probability distribution and for the 

same parameter estimation method (if available), the flood quantile (XT), the probability of non-

exceedance (q) and the corresponding return period (T) for the historical and two future periods.  

For each times series, a comparison was done between the four probability distribution results, 

based on two models selection criteria: the Bayesian Information criterion (BIC) and Akaike  

Information Criterion (AIC), (Ehsanzadeh et al., 2010). The best fit probability distribution was 

thus identified. The probability distribution recording the lower BIC and AIC  was considered as 

the best fitting the discharge series (Giuliano et al., 2009). Therefore, its results were used to 

calculate  the percentage change of the future quantiles based on the historical quantiles.  Hence, 

percentage change showed the impact of climate change on flood frequency in the Mono Lower 

basin.
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CHAPTER FIVE 
 

5. RESULTS AND DISCUSSION 

This chapter presents the results obtained from hydrological modeling, climate change signal and 

impact assessment on the flood frequency for historical and future periods for the study area. 

5.1. HBV model set-up 

This section explains the results obtained from calibration and validation of HBV model. 

 5.1.1. Calibration 

Calibration of the model is a process of setting model parameters so that the simulated results 

match with the observed data and it is done after making a comparison between the simulated and 

observed discharge results. After running the HBV model with different sets of parameters, the 

parameters giving the best fit between the observed and simulated discharges are presented in  

Table 3. 

Table 3. Calibration parameters 

  

 

Based on the observed rainfall, temperature, and evapotranspiration data for the period 1986 to 

1990 (5 years), the hydrograph simulated by HBV model as shown in  Figure 11, was obtained at 

Calibration 

parameters 

Values Calibration 

parameters 

Values 

Alpha 0 CFMAX 3.516 

K0 0.311 CFR 31.843 

K1 0.212 CWH 0.931 

K2 0.073 FC 1116.729 

MAXBAS 6.773 LP 0.693 

PERC 2.282 SFCF 1.467 

UZL 33.759 SP 0.141 

BETA 3.224 TT 23.316 
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the outlet (Athieme) of Mono basin. It shows a strong correlation between observed and simulated 

discharges.  

Figure 11. Observed and simulated Hydrographs for the calibration period 1986 -1990 

Satisfactory results are obtained as shown by Table 4, where the objective function, Nash- Sutcliff 

Efficiency coefficient (NSE) is relatively high reaching the value of 0.77. In addition coefficient 

of determination is 0.794 and  Kling-Gupta efficiency is  0.820. These performance  results are 

above the normal reference 0.50 (see 4.2.2. HBV model  and shows that HBV model can 

significantly well simulate the discharge in Mono Lower basin over the calibration period 1986 to 

1990. 
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Table 4. HBV model efficiency results for the calibration period 

 

 5.1.2. Model Validation 

Following the satisfactory calibration results, the HBV-light hydrological model was validated 

with the calibration parameters. As mentioned in section 4.2.2. HBV model , three independent 

periods (1991- 1992; 1985 and 2010) were used to validate the model. 

Validation also shows satisfactory results (Table 5); according to the goodness of fit criteria for the 

validation periods 1991-1992 and 2010 where NSE, R2 and KGE are greater than 0.80. As for the 

model validation in year 1985, NSE and R2 = 0.551 while KGE =0387<0.5 (normal reference). 

Although, KGE is below 0.50 for the validation in year 1985; the objective function, NSE and the 

coefficient of determination, R2   are above 0.5. However, these values are lower compare to those 

obtained during validation over period the 1991-1992 and in 2010. Therefore, a better match 

between the observed and simulated discharges was found for the period 1991- 1992 and 2010 

compared to 1985. Figure 12, Figure 13, Figure 14 also confirm these results by showing a low 

underestimation in simulated discharge in year 2010 compared to 1985. 

Table 5. HBV model efficiency results during validation periods 

Goodness of fit Validation 

results in 1985 

Validation results 

on period 1991- 

1992 

Validation 

results in 2010 

Model efficiency (Nash-Sutcliffe 

E) 

0.551 0.819 0.813 

Coefficient of determination (R2 ) 0.551 0.820 0.883 

Kling-Gupta efficiency (KGE) 0.387 0.883 0.650 

 

Goodness of fit Calibration results 

Model efficiency (Nash-Sutcliffe E) 0.770 

Coefficient of determination (R2 ) 0.794 

Kling-Gupta efficiency 0.820 
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Figure 12. HBV model validation for the period 1991-1992 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 13. HBV model validation in year 2010 
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Figure 14. HBV model validation in year 1985 

 

Overall, the simulation of discharge using HBV-light provided encouraging results. The model 

shows well performances in view of the NSE and R2 >0.5 thus testifying a good ability to reproduce 

the discharge of the Mono basin.  

 5.2. Discharge analysis 

Simulated discharge over the study period 1983- 2010 is presented in figure 15. Over that period, 

the range of annual maximum discharge at the outlet of the Mono basin is between 178 m3/s  and 

640.6 m3/s. The highest value was recorded in 1987 while the lowest in 1990. 

Figure 15 shows that the variation of annual maximum discharge match well with  annual rainfall 

over the period 1983 to 2010. Hence a decrease in discharge occurs when the rainfall decreases 

and an increase in discharge occurs when rainfall also increases except for the period 1983-1985 

and 2008-2008 which could be due to uncertainties in the model simulation. 
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Figure 15. Trend of annual maximum discharge (Qmax) and annual rainfall in Mono basin 

The mean monthly hydrograph (Figure 16), reveals there is an increase in discharge from June 

(56.08 m3 /s) to October 256.40 m3 /s, with peaks flow in September (283.70 m3 /s) and October. 

The minimum discharge is 3.83 m3 /s.  

 

Figure 16. Mean Monthly hydrograph of Mono River 
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5.3. Climate models’ outputs analysis  

5.3.1.Uncorrected climate model outputs 

The simulated climate data (rainfall and temperature) for the period 1983 to 2005, provided by the 

climate model HAGEM2 and GFDLESM were compared to the observed data for the same period 

(figure 17) . Figure 17 reveals that there is a difference between the observed and simulated climate 

data (rainfall and temperature) for both models. 

Figure 17. Comparison of observed and simulated mean monthly rainfall and mean temperature before 

correction over the period 1983-2005;  (a) and (c)- HadGEM2-ES simulation; (b) and (d)- GFDL-ESM2M 

simulation  
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It is therefore important, to reduce the biases in climate data before analyzing the: projected climate 

in the basin. 

5.3.2. Projected climate data correction using the quantile mapping  

Projected raw climate data (rainfall, mean temperature and computed potential evapotranspiration 

Eto) from two regional climate model, GFDL-ESM2M and HadGEM2-ES under the 

Representative Concentration Pathway (RCP 4.5) were corrected using Quantile mapping method. 

The bias corrected data by the above mentioned two regional climate models were compared to 

the uncorrected data. Figure 18, Figure 19 and Figure 20 present the resulting plots before and 

after applying quantile mapping.  

As illustrated by the first graphs (c, d,g, h) in Figure 18, Figure 19 and Figure 20, the gap between 

the observed and simulated  data (precipitation, temperature) is expressed by the mean distance 

between the bisector of the central plot and the Transfer function (TF). The transfer function is 

generated between the simulated and observed data. Therefore, the rightmost  bias corrected graphs 

shown that observed and simulated data are all adjust on the bisector of the central plot. An early 

conclunding remark about it, is that the bias in simulated data are minimized, hence observed and 

simulated models data are statistically closer. 

Futhermore, after applying quantile mapping method Figure 20, a, b, e,f , i, and j), the Cumulative 

Distribution Function (CDF) curves of the, simulated corrected data, (green line) overlapped the 

observed data (black line).This removed the gap between the simulated data (HadGEM2-ES and 

GFDL-ESMSM models) and the observed data by Transfer Function (TF). The transfer function 

generated between the observed and simulated data for the reference period (1983-2005) is then 

used to adjust bias of 30- year moving window from 1983 -2005 to 2020-2049  and 2070-2099. 

As result of the application of bias correction in this study, the difference between the CDF of the 

climate models outputs and that of the observations are minimized. 
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Figure 18.Uncorrected and bias corrected historical rainfall (HadGEM2-ES); (c) and (e)- uncorrected;       

(d) and (f)- bias corrected

 

Observed data Uncorrected data Corrected data Observed data Uncorrected data Corrected data 

(c) (d) 

(e) (f) 
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Figure 19.Uncorrected and bias corrected historical temperature (GFDL- ESM2M); (g) and (i)- uncorrected; 

(h) and (j)- bias corrected 

 
 

   
Observed data Uncorrected data Corrected data Observed data Uncorrected data Corrected data 

(g) (h) 

(i) (j) 
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Figure 20.Uncorrected and bias corrected historical Evapotranspiration, Eto (HadGEM2-ES),                              

(a)- uncorrected and (b)- bias corrected 

5.4. Climate change Signal  (HadGEM2-ES and GFDL-ESM2M) on water balance 

components 

The change signal in climate and hydrological variables (precipitation, temperature, and discharge) 

expresses the difference between projected and historical values. In this study, both  uncorrected 

and bias corrected (precipitation, temperature, evapotranspiration and discharge) are considered 

for the trend analysis. While the trend in precipitation (Figure 21, a, b) are the same before and 

after bias correction, increase in future precipitation from august to december compared to the 

historical period (1983-2005), there is an increase in the maximum monthly bias corrected 

precipitation (302, 351, 414 mm) compared to uncorrected precipitation (215, 224, 238 mm) 

during the rainy season, from July to September, where the peak flow is observed. The same trend 

is observed with temperature (Figure 21, c, d) where  the mean maximum monthly bias corrected 

 

 
 Observed data Uncorrected data Corrected data 

(a) (b) 
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 temperature (32.71; 33.74; 35.67) are higher than uncorrected values ( 27.81; 29.45; 30.76) for 

respectively  periods 1983-2005; 2020-2049 and 2070-2099. 

 Figure 21, also shows  an increase in future temperature relative to 1983-2005. 

 

Figure 21. Climate change signal of precipitation and  Temperature (Tmean), between the reference (1983-

2005) and future (2020-2049 and 2070-2099) periods under emission scenario RCP 4.5.                                             

(a) and (c)- uncorrected; (b) and (d)- bias corrected. BC is bias corrected and UC refers to uncorrected bias 

(HadGEM2-ES) 

 

As for the Actual Evapotranspiration (AET), (Figure 22, a b), there will be an increase in future 

evapotranspiration compare to the past. Maximum monthly bias corrected AET ( 113.8; 
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121.1; 131.9) are smaller than uncorrected AET (149.41; 153.2; 159.4) respectively for the periods 

1983-2005; 2020-2049 and 2070-2099. 

Figure 22 (c, d)  depicts an increase in future discharges (2020-2049 and 2070-2099) compared to 

historical period (1983-2005). Discharges by 2100 are higher than those of the middle of 21st 

century. Except the months November and December where precipitation by 2100  is low 

compared to 2050 while Actual evapotranspiration is higher. The same trend observed for 

precipitation and temperature is observed for the discharge bias corrected and uncorrected. In one 

hand, for both historical and future periods, Figure 21 .b and 22.b- d show that low discharge are 

observed  from january to March and in december when there is less rainfall and high 

evapotranspiration. In another hand, higher discharge are observed during the main rainy season 

from June to October when the maximum rainfall induced peak flow in September.  

HadGEM2-ES projects an increase in climate and hydrological variables of about 19% for 

precipitation, 9% for AET  and 59% for Discharge by 2050, whereas 35% for precipitation, 20% 

for AET and 102 % for discharge  by 2100 (Table 6). However, there is a decrease in future 

discharges from June to July due to the decrease in future precipitations from February to July and 

the increase in future Actual Evapotranspiration relative to the baseline  (1983-2005). As for 

temperature, it will increase from 0 to 1.17°C in the first future period and  from 1.17°C to 3.20°C 

in the second future period. This change in climate signal  is relative to the reference period (1983-

2005). The change in discharge signal highlights that high discharge will be recorded in future 

Mono basin will be more flooded compared to the past if nothing is done. 

Table 6.  Projected climate variables change between the reference (1983-2005) and future (2020-2049; 

2070-2099) with bias corrected and bias uncorrected HadGEM2-ES simulations 

 

  

HadGEM2-ES Uncorrected Bias corrected 

Period 

Historical 

(1983-

2005) 

Change 

(2020-

2049) 

Change 

(2070-

2099) 

Historical 

(1983-

2005) 

Change 

(2020-

2049) 

Change 

(2070-2099) 

Precipitation (mm) 1576 4% 7.0% 1216.8 19% 35% 

Temperature (°C) 25.69 1.63°C 2.65°C 30.1 1.17°C 3.20°C 

AET (mm) 557 3% 6% 1008.3 9% 20% 

Discharge (mm/day) 136.52 11% 15% 218.3 59% 102% 
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Figure 22. Climate change signal of Evapotranspiration and  Discharge between the reference (1983-2005) 

and future (2020-2049 and 2070-2099) periods under RCP 4.5. (a) and (c)- uncorrected; (b) and (d)- bias 

corrected. 

Overall, HadGEM2-ES model simulations reveal that precipitation, temperature, 

evapotranspiration and discharge will increase in future (2020-2049; 2070-2099) compared  to the 

baseline (1983-2005). Bias correction application (quantile mapping) to the model output didn’t 

alter the trend in climate change signal even though bias corrected values are higher than 
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uncorrected values for precipitation, temperature and discharge while lower for actual 

evapotranspiration.  

Futhermore, HadGEM2-ES model simulations depict well the climate trend in Mono basin where 

during rainy season, there is an increase in discharge from August to October with one peak in 

September and another one in October (section 5.2. Discharge analysis). 

 GFDL-ESM2M model simulation (Figure 23-a, b, c d and Figure 24-a, b) projects an increase in 

future (2020-2049; 2070-2099) climate variables (precipitation, temperature and 

evapotranspiration) compared to the historical period (1983-2005). As HadGEM2-ES model 

simulations, both uncorrected and bias corrected climate variables simulated by GFDL-ESM2M 

present the same trend in climate change signal even though bias corrected precipitation, 

temperature and evapotranspiration are higher than those of uncorrected.  

As presented in table 7, for uncorrected precipitation, precipitation change signal is up to 5% for 

the first future period (2020-2049), 9% for the second future period (2070-2099) compared to the 

reference period, whereas bias corrected precipitation shows that the change is respectively about 

15% and 30%.  

Table 7. Projected change of climate variables between the reference (1983-2005) and future (2020-2049; 

2070-2099) with bias corrected and bias uncorrected GFDL-ESM2M simulations 

GFDL-

ESM2M  Uncorrected Bias corrected 

Period 

Historical 

(1983-

2005) 

Change 

(2020-

2049) 

Change 

(2070-

2099) 

Historical 

(1983-2005) 

Change 

(2020-

2049) 

Change 

(2070-2099) 

Precipitation 

(mm) 1398 +5% +9% 1228 +15% +30% 

Temperature 

(°C) 24.72°C 0.95°C +1.65°C 24.72 +6.50°C +7.41°C 

AET (mm) 557 +138% +155% 1047 +29% +44% 

Discharge 

(mm/day) 834 -82% -86% 196 -58% -44% 
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Figure 23. Climate change signal of precipitation and Temperature (Tmean), between the reference (1983-

2005) and future (2020-2049 and 2070-2099) periods under emission scenario RCP 4.5.RCP 4.5. BC is bias 

corrected and UC refers to uncorrected bias (GFDL- ESM2M); (a) and (c)- uncorrected; (b) and (d)- bias 

corrected. 
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Uncorrected temperature varies from 0 to 0.95°C (2020-2049) then from 0.95 to 1.65°C (2070-

2099) whereas bias corrected temperature  ranges from 0 to 6.5° (2020-2049) , then from 6.50° to 

7.41°C (2070-2099),  (Table 7). This means, quantile mapping bias correction did not change the 

climate trend simulated by GFDL-ESM2M. Besides, the model depict the rainfall trend within 

Mono basin (Figure 23b),  the main rainy season from J une to October with the monthly maximum 

rainfall observed in september. 

Figure 24. Climate change signal of evapotranspiration and discharge  between the reference (1983-2005) 

and future (2020-2049 and 2070-2099) periods under RCP 4.5 (GFDL-ESM2M); (a) and (c)- uncorrected; 

(b) and (d)- bias corrected. 
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For the GFDL-ESM2M simulation under RCP 4.5, Figure 24 (c, d) illustrates that historical 

discharge are higher than future discharge. Bias corrected discharges are lower than uncorrected 

one. According to the change in the signal (Table 7), compared to the historical period, there will 

be a decrease in discharge about 58% by 2050 and 44% by 2100 for bias corrected while 82% and 

86% for bias uncorrected. The decrease in future discharge could be due to the increase in  future 

evapotranspiration which ranges between  29% and 44% with  precipitation which varies between 

15% and 30% as well as temperature  from 6.50° to 7.41°C. Those values are higher than those of 

HadGEM2-ES model which are about  9% and 20% (Evapotranspiration), 19% and 35% 

(Precipitation), 1.17°C and 3.20°C (temperature) and 59% and 102% (Dsicharge) respectively by 

2050 and 2100. 

5.5. Flood frequency analysis and evaluation of its change due to climate effects 

This section presents the results obtained from. Flood frequency analysis using Hyfran software 

verion 1.1. to analyse the relationships between flood quantile and its frequency of occurrence. A 

number of probability distributions were used and the corresponding BIC and AIC were computed 

and presented in Table 8 and table 9.  

5.5.1. Determination of best-fit probability distribution 

Table 8 and Table 9 show the distributions used and the corresponding performance criteria for 

the two models. It can be noticed that for the historical period of 1983- 2005, and future periods 

(2020-2049; 2070-2099), Weibull distribution presents the lower BIC and AIC compared to the 

Generalized Extreme value (GEV), Gumbel and Pearson type III using both Maximum Likelihood 

and Method of moments. As shown by the graph in Figure 25. Weibull distribution line (red) 

account for most of observation points. The probability distribution which has the lower BIC and 

AIC is the one fitting better the data series (section 2.3.4). Hence, Weibull fitting the best the 

discharge series for both HadGEM2-ES  and GFDL-ESM2M models / HBV outputs. 
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Figure 25.Weibull distribution 

Table 8. Comparison of the criteria values for different probability distributions for HadGEM2-ES.                     

BIC: Bayesian Information criterion, AIC: Akaike  Information Criterion and XT: Quantile 

 

HadGEM2-ES 

Probability 

Distribution 

Parameter 

Estimation 

method 

Period 1983-2005 Period 2020-2049 Period 2070-2099 

XT BIC AIC XT BIC AIC XT BIC AIC 

Weibull 

Maximum 

Likelihood 

4089 371.3 369.05 5618 506.70 503.9 5374 511.358 508.56 

Generalized 

Extreme 

value, GEV 

11228 374.6 371.192 5210 
511.67

6 
508.9 5945 512.542 509.74 

Gumbel 

(GEV I) 
3533 377.44 375.164 9740 511.75 507.5 6124 515.858 511.65 

Weibull 

Method of 

moments 

4339 371.47 369.197 5852 506.81 504 5515 511.426 508.62 

Generalized 

Extreme 

value, GEV 

4033 378.71 376.44 5672 512.49 509 5887 512.497 509.7 

Pearson type 

III 
4107 379.76 376.353 5698 513.98 509.8 5507 516.448 512.24 

Gumbel 

(GEV I) 
4117 381.19 377.786 

5723 
515.60 511.4 5532 516.517 512.31 



 

69 

 

Table 9. Comparison of the criteria values for different probability distribution,  (GFDL-ESM2M) 

 

5.5.2. Climate change impact on flood frequency  

Understanding the climate change impact on the hydrologic cycle evolution is one of the major 

challenges for water resources management. Recent climate changes have had serious impacts on 

the magnitude and frequency of floods in many regions of the world (IPCC, 2014). This section 

therefore, presents the results and analysis about the impact of climate change on flood frequency 

in the study area, Mono  Lower Basin. Table 10 presents the probability of non-exceedance (q),  

the flood quantile (XT) as well as the corresponding return period (T), for the historical (1983-

2005) and future periods (2020-2049; 2070-2099). Those results were obtained from Weibul 

distribution (method of moments) with Hyfran software. 

 

 

 

 

GFDL-ESM2M 

Probability 

Distribution 

Parameter 

Estimation 

method 

Period 1983-2005 Period 2020-2049 Period 2070-2099 

XT BIC AIC XT BIC AIC XT BIC AIC 

Weibull 

Maximum 

Likelihood 

2278  353 351 1442 422 420 1461 430 428 

Generalized 

Extreme 

value, GEV 

2518 354 352 6563 425 421 1528 434 431 

Gumbel 

(GEV I) 
2631 357 353 1302 430 427 1667 437 433 

Weibull 

Method of 

moments 

2350 353 351 1491 423 420 1469 430 428 

Generalized 

Extreme 

value, GEV 

2513 354 352 1422 430 428 1504 434 431 

Pearson 

type III 
2393 357 353 1369 434 430 1376 438 434 

Gumbel 

(GEV I) 
2407 357 354 

1380 
435 431 1374 439 435 
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Table 10. Frequency analysis results for the periods 1983-2005, 2020-2049 and 2070-2099,  Weibull 

distribution (Method of moments), HadGEM2-ES and GFDL-ESM2M 

To reduce the uncertainties in climate model simulations, Hydrological model HBV, Eto 

calculator, quantile mapping method, Hyfran software, the analysis was concentrated on change 

in quantiles which is common in scenario analysis (Hounkpè et al., 2018) rather than absolute 

values. The change in flood frequency over the future periods (2020-2049; 2070-2079) is presented 

in Table 11. HadGEM2-ES reveals an increase in future quantile change whereas GFDL-ESM2M 

shows a decrease  in future quantiles compared to the historical quantiles.  For HadGEM2-ES  the 

change ranges between  34.79% and 66.24% for the period (2020-2049 and 26.95%  to 146.80% 

for 2070-2099. As for, GFDL-ESM2M, it varies from -63.13% to -36.59% for 2020-2049 and 

from -49.15% to -37.44% for 2070-2099. Therefore, while HadGEM2-ES  indicated that flood 

frequency will increase in the middle and by the end of 21st century due to the climate change, 

GFDL-ESM2M presents a decreasing trend. 

 

 

 

Models HadGEM2-ES GFDL-ESM2M 

T q XT 

(1983- 2005) 

XT 

(2020-2049) 

XT 

(2070-2099) 

XT 

(1983- 2005) 

XT 

(2020-2049) 

XT 

(2070-2099) 

50 0.98 3740 5140 5040 2150 1300 1320 

20 0.95 2940 4160 4340 1860 1040 1110 

10 0.90 2320 3370 3750 1610 836 931 

5 0.80 1680 2530 3080 1320 619 735 

3 0.6667 1190 1870 2490 1070 450 572 

2 0.50 782 1300 1930 830 306 422 
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Table 11. Percentage change in future quantiles relative to the historical quantiles 

 HadGEM2-ES 
 

GFDL-ESM2M 

 

Average 

T 2020-2040 
 

2070-2099 

 

2020-2049 

 

2070-2099 
2020-2040 

 

2070-2099 

50 +37.43 +34.75 -39.53 -38.60 -2.1 -3.85 

20 +41.49 +47.61 -44.08 -40.32 -2.59 +7.29 

10 +45.25 +61.63 -48.07 -42.17 -2.82 +19.46 

5 +50.59 +83.33 -53.10 -44.31 -2.51 +39.02 

3 +57.14 +109.24 -57.94 -46.54 -0.8 +62.7 

2 +66.24 +146.80 -63.13 -49.15 +3.11 +97.65 

 

As also shown by Table 11, for both future periods (2020-2049; 2070-2099),  when the return 

period increases, the percentage changes decrease. In other words, higher return periods 

correspond to lower variation. Furthermore, according to HadGEM2-ES model, change in 

quantiles for the period 2070- 2099  are higher than those of 2020-2049 for the return periods  20, 

10, 5, 3 and 2 while lower for GFDL-ESM2M model . On one hand, higher discharge will be 

recorded by 2100 compared to 2050 as well as the historical period (1983-2005) based on 

HadGEM2-ES projection. On another hand, lower discharge will be observed in future period 

compared to the past based on GFDL-ESM2M projection. The average change resulting from the 

two models indicated a decrease for the return periods  50, 20, 10, 5, 3 and 50 respectively for 

future periods 2020-2049 and 2070-2099 whereas an increase for the return periods 3, 2 (2020-

2049)  and 20, 10, 10, 5, 3 and 2 (2070-2099). 
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Figure 26. Change in future quantiles based on historical quantiles 
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CHAPTER SIX 

6. CONCLUSION AND RECOMMENDATIONS 

 

The main objective of this research study achieved through three specific objectives. Firstly, HBV-

light model (Hydrologiska Byråns Vattenbalansavdelning) version 4.0.0.22 was calibrated over 

the period 1986- 1990 and validated on 1991- 1992, and in  years 1985 and 2010. Satisfactory 

results were obtained during the calibration and validation periods except the independent years 

1985 and 2010 where the simulated hydrograph are quite underestimated compared to the observed 

one. 

Secondly, two  WASCAL regional climate models (HadGEM2-ES and GFDL-ESM2M) under the 

Representative Concentration Pathway (RCP 4.5), were used as input to HBV-light model to 

evaluate the climate change signal on water balance components (precipitation, temperature, 

evapotranspiration and discharge) in the Lower part of  Mono basin. The ability of the climate 

models to simulate historical climate and discharge was evaluated prior to future climate change 

impact assessment.This showed that bias correction was important for the models output in order 

to accurately reproduce observed data. Bias correction method applied in this research, quantile 

mapping, proved not to alter projected water balance components change signal. This result 

indicates the same trend in climate variables for both models with and without bias correction. The 

models exhibits an overall increase in future precipitation and temperature. HadGEM2-ES and 

GFDL-ESM2M project respectively an increase of about 19% and 15% for precipitation;  0 to 

1.17°C and 0 to  6.5°C for temperature  by 2050 while 35% and 30% for precipitation; 0 to 7.41°C 

for temperature by 2100. Given these characteristics of the climate, the discharge of Mono River 

at Athiémé will undergo some modifications. HadGEM2-ES model illustrates an increase in 

discharge signal change about 59% by 2050 and 102% by 2100  whereas  GFDL-ESM2M 

simulations reveals a decrease  in future discharge about 58% by 2050 and 44% by 2100.The 

opposite signals in discharge based on different climate products make it difficult to consider the 

results for decision making. More climate products, CORDEX Africa data and Ensembles could 

be considered for future research in Mono catchment. 

Thirdly, climate change impact on flood frequency was assessed in the study area. The finding 

underline While HadGEM2-ES simulations under RCP 4.5 exhibits an increase in flood frequency, 
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GFDL-ESM2M shows a decrease. The average change of  HadGEM2-ES and GFDL-ESM2M 

models project a decrease for the return period 50  and an increase for the return period 3 and 2. 

The applied Hydrological model, HBV-light version 4.0.0.22 proved to simulate discharge in 

Mono Basin. The adopted “ quantile mapping”, approach also appears suitable for minimizing bias 

in climate models output without altering the trend in climate change signal. 

The results further highlight on one hand,  the need for a larger ensemble of projections to better 

assessing the impacts of climate change on water balance components and flood frequency in the 

Mono Basin .On another hand,  land use could be considered as it is also an issue to improve the 

findings in further studies especially for designing water management interventions or strategies 

in term of practical relevance. Two models are not enough to conclude on the trend and climate 

change signal in the study area. In addition, the use of  several hydrological models could help to 

properly evaluate the results. 

Therefore, assessing future climate change impact on water balance components and flood 

frequency in the Basin needs to be updated with the improvement of climate projections. It is also 

necessary on one hand,  to pursue and strengthen existing flood management strategies in areas 

located in the Lower part of Mono Basin and on another hand to develop adaptation and 

contingency plans for the whole Mono river Basin.  
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APPENDIXES 
 

Appendix 1: Rainfall data processing 

 

A. Rainfall raw data 

 

B. Rainfall data arranged using microsoft office excel 

YEAR DAY JAN FEV MARS APR MAY JUN JUL AUG SEPT NOV OCT DEC 

1983 1 -99 -99 -99 -99 -99 -99 -99 -99 -99 -99 -99 16.7 

1983 2 -99 -99 -99 -99 -99 -99 -99 -99 -99 -99 -99 18.5 

1983 3 -99 -99 -99 23.6 -99 -99 -99 -99 -99 -99 -99 -99 

1983 4 -99 -99 -99 -99 -99 -99 -99 -99 -99 7.3 -99 -99 

1983 5 -99 -99 -99 -99 -99 -99 -99 -99 -99 -99 8.3 -99 

1983 6 -99 -99 -99 -99 -99 -99 -99 88.0 -99 -99 -99 -99 

1983 7 -99 -99 -99 -99 -99 8.0 -99 -99 -99 -99 -99 -99 

1983 8 -99 -99 -99 -99 -99 -99 -99 -99 -99 -99 -99 -99 

1983 9 -99 -99 -99 -99 32.0 -99 -99 -99 -99 -99 -99 -99 

1983 10 -99 -99 -99 26.6 -99 18.0 -99 -99 -99 -99 -99 -99 

 

 

 

      PLU IOMETRI JOURNA 
IERE 
AN 

EE 
1983   EDITE LE   / /   

          ------- --             

TATI N: AFAG AN     PAYS :     LATI UDE : .   

UMER : 47 7     REGIO :     LONG TUDE: .   

OTAL PLUVIO. 564.0 m           ALTI UDE : M   

---- ------- ------- ------- ------- ------- ------- ------- ------- ------- ------- ------- ------- 

JOUR JAN FEV MARS AVR MAI JUIN JLT AOUT SEPT OCT NOV DEC 

---- ------- ------- ------- ------- ------- ------- ------- ------- ------- ------- ------- ------- 

1 . . . . . . . . . . . 16.7 

2 . . . . . . . . . . . 18.5 

3 . . . 23.6 . . . . . . . . 

4 . . . . . . . . . 7.3 . . 

5 . . . . . . . . . . 8.3 . 

                          

6 . . . . . . . 88.0 . . . . 

7 . . . . . 8.0 . . . . . . 

8 . . . . . . . . . . . . 

9 . . . . 32.0 . . . . . . . 

10 . . . 26.6 . 18.0 . . . . . . 



 

b 

 

 

C. Rainfall data transformed using R software 

 

YEAR DATA 

1/1/1983 -99 

1/2/1983 -99 

1/3/1983 -99 

1/4/1983 -99 

1/5/1983 -99 

1/6/1983 -99 

1/7/1983 -99 

1/8/1983 -99 

1/9/1983 -99 

1/10/1983 -99 

  

  

 

D.  Stations rainfall data combined in one table 

YEARS 

GRAND_POP

O 

ATHIEM

E 

DOGB

O 

LOKOSS

A 

PJLONKL

Y 

TCHETT

I 

SOKOD

E 

1/1/1983 0 NA 0 0 0 0 -99 

1/2/1983 0 NA 0 0 0 0 -99 

1/3/1983 0 NA 0 0 0 0 -99 

1/4/1983 0 NA 0 0 0 0 -99 

1/5/1983 0 NA 0 0 0 0 -99 

1/6/1983 0 NA 0 0 0 0 -99 

1/7/1983 0 NA 0 0 0 0 -99 

1/8/1983 0 NA 0 0 0 0 -99 

1/9/1983 0 NA 0 0 0 0 -99 

1/10/1983 0 NA 0 0 0 0 -99 

 

 

 

 



 

c 

 

 

E. Weighted coefficient, Thiessen polygon method 

 

Station Area Weighted 

Tabligbo 654.8660278 0.0283254 

Dogbo-Tota 646.9470215 0.0279829 

Tchetti 518.8549805 0.0224424 

anie-mono 4292.790039 0.185679 

Sotouboua 5413.100098 0.234137 

Kpewa-Aledjo 353.7820129 0.0300552 

Wahala 1371.280029 0.059313 

Lonkly 1458.650024 0.063092 

Athieme 87.2863007 0.0037755 

Afagnan 31.3693008 0.0013568 

Lokossa 201.1089935 0.0086987 

Nangbeto 1438.849976 0.0622356 

Atakpame 1583.550049 0.0684944 

Amou-Oblo 1196.790039 0.0517656 

Tchamba 1302.729981 0.0563479 

Sokode 1670.319946 0.0849731 

Penesoulou 341.0750122 0 

Malfacassa 261.8389893 0.0113255 

Bassila 294.2090149 0 

Total 23119.39783 1 
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F. Thiessen polygon obtained using Arc GIS 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

e 

 

G. Discharge missing data from 1983 to 2010 

 

 

 

 

 

 

 

 

 

 

 

 

 

G. Hydro-climatic stations coordinates 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

YEAR Missing data (%) YEAR Missing data (%) 

1983 47.95 1997 1.92 

1984 22.13 1998 0.27 

1985 9.86 1999 67.76 

1986 42.19 2000 19.40 

1987 53.42 2001 100.00 

1988 0.00 2002 51.23 

1989 0.00 2003 67.95 

1990 0.27 2004 49.18 

1991 19.45 2005 76.71 

1992 2.46 2006 66.58 

1993 39.73 2007 51.51 

1994 66.30 2008 82.24 

1995 100.00 2009 0.00 

1996 26.23 2010 0.00 

Stations Longitude Latitude 

Afagnan 1.6167 6.5 

Aklakou 1.7167 6.35 

Athieme 1.6667517 6.566721 

Dogbo-

Tota 1.7833 6.75 

Grand-

Popo 1.8167001 6.2833 

Lokossa 1.7167 6.6333 

Tabligbo 1.5 6.5833 

Sotouboua 0.9833 8.5667 

Amou-

Oblo 0.95 7.3833 

anie-mono 1.25 7.75 

Stations Longitude Latitude 

Bohicon 2.06658117 7.1667474 

Lonkly 1.650012 7.150017 

Nangbeto 1.435876 7.420386 

Tchetti 1.716667 7.63333 

Wahala 1.1667 7.1833 

Atakpame 1.1167 7.5833 

Tchamba 1.416667 9.0333 

Kpewa-

Aledjo 1.2333 9.2833 

Malfacassa 0.9667 9.1667 

Sokode 1.5 9 



 

f 

 

Appendix 2: HBV model simulation for GFDLESM and HAGEM2 (RCP 4.5) 
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Appendix 3: Climate Change Trend in Mono Basin 
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