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 ABSTRACT 

Water resource management is critical to economic development in Africa, but surprisingly lack 

of data and its quality undermines decision making in the water sector. Hydrological simulation is 

a powerful tool providing timely and useful information about streamflow, but requires streamflow 

data for model calibration and validation. The lack of data required for model calibration has 

brought the practitioners and scientists to come up with alternative methods namely regionalisation 

techniques. In this study, 17 catchments selected in the humid part of Kenya, essentially located in 

the mountainous areas, were calibrated in order to derive a regional model for calibration of 

ungauged catchments in the area. CHIRPS rainfall estimates and PET estimated from NASA 

POWER meteorological data have been harnessed to calibrate AWBM, the model selected for the 

study. Multiple linear regression was used to develop regional models relating defined catchments 

soil, topography, land use/cover based attributes and the model parameters obtained from 

calibration. Three models were developed including those for the average surface storage and the 

baseflow parameters BFI and Kbase. The surface recession constant’s model could not be 

established and default values were adopted. The successfully estimated parameter values and the 

default values, were used to simulate the daily streamflows. The average of the determination 

coefficient R2 were comparable, with R2 values of 0.64 and 0.65 over the calibration periods and 

0.62 and 0.60 over the verification periods, respectively for calibrated and estimated parameters. 

Better quality data will substantially improve the method, however, in context of strict data 

scarcity, this method can be recommended for estimation of streamflow in ungauged catchments. 

 

 

 

 

 

 

 

Key words: PUB, CHIRPS, regression method, data-scarcity, complex landform. 
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Resumé 

La gestion des ressources en eau a été clairement reconnue comme essentielle au développement 

économique de l’Afrique, mais il est surprenant de constater que la valeur des données sur 

lesquelles reposent les décisions est moins bien valorisée, la collecte et la gestion des données ayant 

diminué ces dernières années. La simulation hydrologique est un outil important fournissant des 

informations opportunes et utiles sur le debit de cours d’eau. L’absence de données nécessaires à 

la calibration des modèles a amené les praticiens et les scientifiques à proposer une méthode 

alternative, à savoir les techniques de régionalisation. Dans cette étude, 17 bassins versants ont été 

sélectionnés dans la zone humide du Kenya, essentiellement situés dans les régions montagneuses, 

et ont été calibrés afin de créer un modèle régional pour la calibration des bassins versants non 

jaugés de la région. Les estimations des précipitations  de CHIRPS et l’evapotranspiration poteniel 

estimées à partir des données météorologiques de la  base de données NASA POWER ont été 

utilisées pour calibrer le modèle sélectionné pour l'étude ; l'AWBM (Model Australien du Bilan de 

L’Eau). Des régressions linéaires multiples ont été utilisées pour développer des modèles régionaux 

associant les characteristeristiques définis pour les bassins versants liées a leur sol, leur topographie 

et leur utilisation/couverture des terres aux paramètres du modèle obtenus à partir de la calibration. 

Trois modèles ont été développés, notamment le resevoir moyen de surface, les paramètres de 

l’écoulement de base IEB et Kbase. Le modèle de la constante de récession des ruissellements n’a 

pas pu être établi. Les estimations des paramètres jugées acceptables et les valeurs par defaut ont  

été utilisées pour simuler le débit journalier. Les moyennes du coefficient de détermination r2 sont 

proches, avec des valeurs de R2 de 0,64 et 0,65 obtenus sur les périodes de calibration et de 0,62 et 

0,60 sur les périodes de vérification, respectivement pour les paramètres calibrés et estimés. Des 

données de meilleure qualité amélioreront considérablement la méthode. Toutefois, dans un 

contexte stricte de manque  données, cette méthode peut être recommandée pour l'estimation du 

débit dans les bassins versants non jaugés. 

 

 

 

Mots clés: PUB, CHIRPS, Regression , Manque de données, Relief accidenté. 
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ABBREVIATIONS AND ACRONYMS 

AWBM                      Australian Water Balance Model 

CHIRPS                     Climate Hazards Group InfraRed Precipitation with Stations 

DEM    Digital Elevation Model 

FAO    Food and Agriculture Organization 

GIS    Geographic Information Systems 

IDWM   Inverse Distance Weighted Method 

NIB   National Irrigation Bureau  

PUB                            Prediction in Ungauged Basins 

SDG   Sustainable Development Goal 

CAs                             Catchment Atributes 

MPs                            Model Parameters 

WRA                          Water Resources Authority 
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1 Introduction 

1.1 Background of Study  

Sustainable management of river basins requires a variety of tools that can generate runoff 

predictions over a range of time and space scales (Blöschl, Sivapalan, Wagner, Viglione, & 

Savenije, 2013). The applications of runoff prediction are so diverse and extremely important 

wherever communities are established, for research and practical applications. Some of those 

applications are water supply, water allocation and planning, hydropower potential, engineering 

design, water quality control, and ecological purposes.  Viewed at global scale, is not possible to 

properly work toward SDGs achievement, integrated disaster management or adaptation and 

mitigation to climate change and variability without good information about streamflow prediction. 

At regional level, one of the priority of the Agenda 2063 is water in its several aspects, including 

water management, water and food security, hydropower production, water for environment and 

water governance that cannot be achieved without a sound level of mastery of streamflow 

prediction.  Knowledge about surface water resources and the complex processes underlying its 

availability form the occurrence of precipitation to the routing, storage and depletion across the 

hydrological system is important for flood risk management, water supply, food production, 

hydropower production and adaptation to climate change among others. Most of the reliable 

methods of runoff prediction are data-driven, which means they require historical streamflow 

records to produce better estimations. And the more accurate are the records, better the predictions. 

The common method for streamflow data acquisition is measurements of water levels at a river 

gauging station that is converted into flow rate using a rating curve. Unfortunately, in most 

catchments around the world runoff is not measured. According to Blöschl et. al. (2013) in any 

given region, in any part of the world, only a small fraction of the catchments possess streamflow 

gauging station where runoff is measured. If the high cost of installation, maintenance and 

operation of river gauging station is the main issue of lack of data or poor quality data (with gaps 

and inconsistencies) for most of the catchments, especially in developing countries, other reasons 

for lack of reliable streamflow data enumerated by Gibbs, Dandy, & Maier, (2008) are the  

significant modifications to catchment characteristics, or long periods of unseasonable rainfall 

producing unrepresentative relationships.  

The problem of streamflow data availability is so acute that it has been recognized worldwide, 

prompting the International Association of Hydrological Sciences (lAHS) to adopt the Prediction 
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in Ungauged Catchments, as a decadal research agenda for the period 2003-2012, the principal 

objectives being to further develop methodologies for predictions in ungauged basins and to reduce 

uncertainties associated with model prediction (Blöschl et al., 2013). 

Nevertheless, for its important applications, streamflow data is a necessity at any location, where 

communities are established, or of interest for implementation of any project involving surface 

water.  This need of streamflow data is crucial today more than ever, as such information is needed 

to support decision-making to alleviate the pressure of increased population on water resources 

quantity and quality and one the other hand, to design engineering structures such as dams, 

reservoirs and any other infrastructure for water management or to face the increasing frequency 

and magnitude of floods due to the combined effect of climate change and land use change.   

Hydrological rainfall-runoff modelling and simulations are a key component of water-related 

projects management. Hydrological rainfall-runoff models are based on mathematical equations 

representing in a simplified way the different complex processes underlying the runoff generation 

in the catchment area. Hundreds of such models are available today and classified in many ways. 

One of the most important classifications according to Devi et al, (2015) distinguish them into 

empirical models, conceptual models and physically-based models. Rainfall-runoff models are able 

to translate under certain precision the rainfall into runoff at few minutes, hourly, daily up to yearly 

time increments. Most of them use as inputs, climate data and catchment area, but some very 

sophisticated, require more detailed catchment physical characteristics information across the 

catchment area. There are many processes underlying runoff generation grouped into routing, 

storage and loss processes. In the rainfall-runoff models, only the dominant processes in the context 

of the model development and application are taken into account. Each process is represented by a 

parameter that quantifies the magnitude of the process. Finding the optimal values for each of the 

parameters of a particular model applied to a particular catchment is known as model calibration. 

This step in the modelling process requires concurrent climate data, mainly precipitation, 

evaporation or temperature and catchment physical characteristics according to the model, and the 

historical record of streamflow which is the rare commodity. Another constraint, is that the changes 

in the catchment characteristics, defining its hydrological behaviour, should be minimal unless the 

model is able to allow for important changes if those changes have been measured. The Lack of 

data, the availability of poor quality data for model calibration and validation, and unmonitored 

changes of the catchment physiography are the major problems that can face a hydrological 
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rainfall-runoff modeller. Nevertheless, simulations are a very important source of information for 

water forecasting and long term water balance. Historical records of climatic data, most of the time 

longer than streamflow data, and stochastic rainfall predictions are available, allowing to fill the 

gaps of non-recorded periods and water forecasting. 

Water resource management has been clearly recognized as critical to economic development in 

Africa, but surprisingly, the value of the data on which decisions are based is less well appreciated, 

with a decline in data collection and management in recent years (Houghton-Carr & Matt, 2006). 

In Kenya, even though big efforts have been done to implement a relatively high-resolution 

network of streamflow gauges, it is reported a decline in the number of stream gages in recent 

years. According to Mwangi, (2008) the number of river gauging  stations declined by 78%  

between 1990 and 2001. Let alone this decline, there are still many catchments that are ungauged 

and for some catchments having a river gauging station, the data quality is poor. Some alternative 

methods have to be applied to satisfy this need for streamflow data for any kind of application. 

Many approaches are available for this purpose. In general, they consist of transferring 

hydrological information from gauged catchment(s) to an ungauged catchment based on their 

spatial proximity or physical similarity. The underlying assumption for the similarity-based 

regionalisation is that catchments having similar catchment properties are hydrologically similar. 

This is done by using statistical regressions or a rainfall-runoff model regionalisation. The 

statistical regressions consist of establishing equations linking concurrent catchment physical 

characteristics and climatic variables to the observed streamflow of the same time span. These 

equations can be then used to estimate streamflow for ungauged catchment as catchment physical 

characteristics and climatic data can be obtained. The hydrological rainfall-runoff model 

regionalisation consists of a panoply of techniques used to estimate the set of optimal parameters 

values of a rainfall-runoff model for calibration of an ungauged catchment from optimal parameters 

obtained for gauged catchments after calibration. This second approach of estimating streamflow 

in ungauged catchments has been employed in many studies (Mwangi (2008), Boughton et al., 

(2007) Xue, Rizzi and Xu, (2017) Ibrahim et al., (2015)) and can be applied to many situations as 

good estimations can be achieved with sparser streamflow gauging stations networks and over 

larger areas compared to the statistical model, thus fitting well to this situation. 

Generally, for estimations in ungauged catchments, it is desirable according to Gibbs et al., (2008) 

to implement a model with as few free parameters as possible, provided the model describes well 
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the processes occurring in the catchment under consideration. This makes the lumped conceptual 

rainfall-runoff models suitable for the regionalization studies. The aim of this study is develop a 

method for estimation of streamflow in ungauged catchment in the humid area of Kenya. 

Regionalisation studies are data intensive, especially for extended study areas. This is referred to 

as the paradox of PUB described by Bonell et al., (2006)  as situation that requires data-rich 

cathments to solve a problem of data scarcity. For rainfall and evaporation data and catchment 

attributes information, estimates available from global remote sensing dataset will be explored.    

 

1.2 Problem Statement and Justification   

Kenya is a country with a surface area of 582,646 km2 square kilometres of which about 97% is 

the land and the remaining 3% is water. Approximately 490,000 km2 (more than 80% of the land 

area) of the land area, is classified as arid and semi-arid land (ASAL). The 81,000 km2 remaining 

is classified as non-arid and profitably usable lands, sustaining most of the Kenyan economy and 

human population. The country faces enormous challenges in the management of its limited water 

resources due to an increasing population estimated to 39 million in 2009 and projected to 52 

million by 2030. The magnitude of the issues, challenges and the severity of the water crisis that 

face Kenya cut across most sectors of the economy hence, making water resources management a 

high priority (WATER RESOURCES SITUATION REPORT of July 2017 to June 2018). Water 

resources data collection and information generation has been highlighted in the same report as one 

of these challenges along with water scarcity and variability; water pollution; enforcement of water 

laws; catchment degradation; and climate change impacts.  

Also, the country is classified as a chronically water-scarce country because the freshwater is 

limited by an estimated annual supply of 534m3 per capita (2009) projected to decrease as 

population increase. Which is less than 1000m3, threshold below which a country is considered as 

water scarce (World Bank, 2010). The uneven distribution of rainfall and population are the major 

reason for the water supply problems. The surface water contribute to 96% of the total available 

water resources while the rest is the groundwater component, this shows the importance of surface 

water resources for the country and the need of intensive monitoring (KARANI, 2005). The Water 

Act 2016 imposes an obligation on all public bodies to consider the requirements of the reserve 

when performing any statutory function in relation to the water resource concerned. For rivers, the 
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amount of water available 95% of the time (Q95) should be established and assured at any given 

time, whereas for ground water a Q45 of ground water recharge is required. Reserve flow is 

determined using flow duration analysis. To do this, long term flow data is required(WARMA, 

2017) . However, scarce water resource data exists and thus cannot be relied upon for purposes of 

planning; this is because the hydrometrological network data collection stations are not available 

within some catchments. It is reported in the WATER RESOURCES SITUATION REPORT of 

July 2017 to June 2018, 71.3% of the river gauging station are operational leaving 29.7% of the 

gauging network out of service. The intense rehabilitation and automation of many river gauging 

station reported in the same document confirms the need of streamflow data. Unfortunately such 

rehabilitation cannot satisfy the need since long term record are required for the management 

practices. Hence the increase of smallholder irrigations schemes facing the ambition of the country 

to ensure equitable access to water by the NIB (National Irrigation Bureau) requires reliable 

information about water availability (Karina & Mwaniki, 2011). An integrated water resources 

management relies on adequate water resources information that is acquired through continuous 

data collection, in combination with suitable analysis and assessment of the water-related 

information for water resources planning and development purposes (RIWSP, 2012) cited in 

(Abimbola et al., 2017). There is need therefore for alternative methods of generating this data to 

enable proper assessment of the water resources potential of these basins which supports the 

importance of this study to develop regionalization techniques for streamflow estimation. 

 

1.2 Objectives 

General objective: To establish a method for estimation of stream flow in ungauged catchments 

using the lumped, conceptual AWBM hydrological model and regionalization techniques in humid 

areas of Kenya. 

Specific objectives 

i. To determine the hydrologically relevant geomorphometry soil, land use and climate 

characteristics of the selected catchments, 

ii. To calibrate and validate AWBM model for selected catchments in the humid areas of 

Kenya, 
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iii. To establish statistical relationships between AWBM parameters and the defined 

geomorphometry, soil, land use and climate characteristics of the selected catchments, 

iv. To derive from the established relationships, the regionalized parameters for ungauged 

catchments,  

v. To estimate stream flows in the “ungauged” catchments in the humid areas of Kenya using 

regionalized parameters. 

1.3 Research questions 

i. What parameter sets of the AWBM give the best fits between observed and simulated 

stream flows in the selected in the humid areas of Kenya? 

ii. What are the functional relationships between catchments’ characteristics and the AWBM 

parameters? 

iii. Can derived relationships between catchments characteristics values and AWBM 

parameters be used to regionalize the model for runoff estimation in ungauged catchments? 

 

1.3 Limitations 

The study was limited to rivers with sufficient data records and catchments with little land use 

change or dams over the recorded period as this study requires unimpaired catchment, as changes 

in land use and dams can alter the catchment response. The study targeted small and medium sized 

catchments (up to 1000 Km2) where rainfall data can be considered relatively well distributed. No 

study has been done to take into consideration the effect of land use change. 
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2. Literature review 

2.1 Regionalization method uncertainties 

Predicting runoff in the mostly ungauged water catchment areas of the world is vital to practical 

applications such as the design of drainage infrastructure and flood defences, for runoff forecasting 

and for catchment management tasks such as water allocation and climate impact analysis (Blöschl 

et al., 2013). Runoff prediction in ungauged catchments has been the focus of many studies by 

hydrologists and a tangible fact is the worldwide initiative by International Association of 

Hydrological Sciences (IAHS), which established the Decade on Prediction in Ungauged Basins 

(PUB) program aimed at improving capability in estimating runoff from ungauged basins using the 

so-called regionalization techniques  (Blöschl et al., 2013). The reason is that only few catchments 

in the world are gauged, and also it is reported that current measurement networks are declining 

and the impacts of anthropogenic changes and climate amplify this issue. The underlying 

assumption for the regionalization of hydrological parameters is that catchments having similar 

catchment properties are hydrological similar.  

 

 Despite all the efforts, there is still no single accepted approach for streamflow regionalization in 

river basins (Araujo, Mello, Gollin, Quadros, & Gomes, 2018a). For example Liew and Mittelstet, 

(2018) used three regionalization methods, the averaging, the nearest neighbour and donor 

approaches for estimating the SWAT model parameters of catchments in Nebraska. They found 

out that the regional average approach gave better results than the nearest neighbour or donor 

approaches. Xue, Rizzi and Xu, (2017) carried out a comprehensive assessment of the strengths 

and limitations of existing regionalization methods in predicting ungauged stream flows in the high 

latitudes, large climate and geographically diverse, seasonally snow-covered mountainous 

catchments of Norway, using the water balance model – WASMOD (Water And Snow balance 

MODeling system) on 118 independent catchment. They concluded that spatial proximity and 

physical similarity approaches, performed better than regression-based approaches, the 

combination the first approaches improved slightly the simulations, but classifying the catchments 

into homogeneous groups did not improve the simulations in ungauged catchments. Merz and 

Blöschl, (2004) worked on the regionalization of 308 catchments in Austria using a lumped 

conceptual water balance model involving 11 parameters calibration. They concluded that multiple 
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regressions with catchment attributes produce better regionalization results, and local regressions 

gave better results suggesting the worthiness to take regional differences into account, whereas 

taking a regional parameter value gave the worst simulations. 

   

A comprehensive evaluation of single-and multi-donors, simple benchmarks and more advanced 

regionalization methods using multi-models, two performance measures and their statistical 

evaluation indicated that the identification of regionalization methods is dependent on the models, 

the performance measures and their statistical evaluation (Hailegeorgis et al., 2015). The choice of 

the model makes the regionalization more diverse. Many studies have been carried out using 

lumped conceptual water balance models because of their simplicity, limited data sets and 

parameters number. Xu and Singh (1998) pointed out that less the number of parameters in the 

hydrological model, great the advantage for a more accurate prediction of the parameters for 

ungauged watersheds. Xue, Rizzi and Xu (2017) made the choice of a simple conceptual model on 

the basis that the influence of equifinality problems and the inter-dependence of model parameters 

will be reduced to a minimum, and also it will provide an objective comparison of the 

regionalization. Another important parameter to consider while discussing regionalisation 

uncertainties is the climate. Patil and Stieglitz (Patil & Stieglitz, 2011), showed that high runoff 

similarity among nearby catchments (and, therefore, good predictability at ungauged catchments) 

is more likely in humid runoff-dominated regions than in dry evaporation-dominated regions.  

 

Many regionalization studies have been undertaken at the continental level.  Ibrahim et al., (2015) 

used Krigging and multiple regression method with GR2M and WatBal models in the Volta basin 

catchments. The results of the two models were similar and the water balance established for the 

basin over the years simulated agreed strongly with the results of other studies. Makungo et al., 

(2010) used a modified nearest neighbour regionalization approach, and Mike 11 NAM and 

AWBM in the Limpopo river basin. He concluded that the results were satisfactory and the method 

can be used to fill the gap of data for the river streamflow.  Mwangi (2008) carried out a 

regionalization study in the Upper Tana catchments, using the IHACRES lumped conceptual 

model. He found the calibration r2 ranging from 0.57 to 0.85 while the simulation r2 ranged from 

0.55 to 0.77 for all catchments, the Nash-Sutcliffe efficiency ranged from 0.78 to 0.91 for 
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calibration and from 0.77 to 0.88 for simulation. According to his findings, the stream flows 

simulated using the estimated parameters agreed well with the observed stream flow series with 

the R² values being of 0.21 and 0.67 and the Nash-Sutcliffe efficiency values being 0.21and 0.68 

respectively.The importance of streamflow regionalization is not only due to its capacity for 

spatialising hydrological information, but also because it can identify those areas in need for hydro-

meteorological network improvement, either by installing new stations or relocating the existing 

ones(Araujo et al., 2018b).  

2.1.1 Methods of regionalization of rainfall-runoff models 

Many methods of regionalization are found in the literature, each of them is specific depending on 

the approach but also on the model used. The methods of regionalization of hydrological model 

parameters are developed in three main ways (Susana, 2014). The ungauged catchment model can 

calibrated with the same parameter values as for a neighbouring gauged catchment, termed as 

spatial proximity method, or with the same parameters as a gauged catchment with similar physical 

attributes, termed as catchment similarity method. The other method knows as regression method 

is very similar to the catchment similarity. It consists of developing statistical relationships relating 

the model parameters to catchment characteristics. These relationships are then used to estimate 

the model parameters for the ungauged catchments (Gibbs et al., 2008). A more recent review has 

numbered five types of techniques consisting of regional averaging approach, nearest neighbour 

approach, regression approach, donor approach and kriging approach (Liew & Mittelstet, 2018).  

The first method is referred to as regional averaging, whereby model parameters from calibrated 

catcments in a given region are averaged and then applied to ungauged catchments in that region. 

A second regionalisation method, called the nearest neighbor, is based on the spatial distance 

between an ungauged catchment of interest and nearby calibrated catchments, which are considered 

to have similar catchment attributes and same parameter values. A third regionalisation technique 

consists in estimating the model parameters independently from a linear regression analysis based 

on the attributes of calibrated catchments in a given region. A fourth method,  commonly reported 

in the literature is the donor approach. The basis of this method is to identify a donor catchment in 

a given area that is most similar in  terms of its catchment attributes and to transpose the calibrated 

set of parameters to that catchment. A fifth method of regionalization is kriging, which interpolates 

between spatially autocorrelated variables. 
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2.2 Data importance and availability  

Most catchments around the world are ungauged; indeed, only a little proportion is gauged. For 

this reason, when runoff is needed at any ungauged river or catchment, it is estimated by means of 

some kind of extrapolation from a gauged location to that ungauged location, which is not 

straightforward. One way or another, this extrapolation requires data of many kinds since methods 

used through the process implicate models that can be legitimated only by observed data collected 

(Blöschl et al., 2013). The data needed for prediction in Ungauged are of three types: climate 

(input), runoff data (in gauged locations) data and catchment characteristics data. Moreover, data 

should not be just seen as model inputs for data have hydrological context and contains specific 

hydrological information. That is why some data from a certain location, relating to runoff, climate 

and catchment of that location, analysed and interpreted by a trained hydrologist, and informed by 

prior knowledge about evolvement of the physical state of the location, can reveal a lot about the 

hydrology of the place. It can direct on what type of model to choose and on the interpretation and 

the rejection of the predictions made by the model. According to  Blöschl et al., (2013), the value 

of data becomes paramount when one begins to accept the notion that catchments are complex 

systems, reflecting the co-evolution of climate, soils, topography and vegetation, and the patterns 

one sees in the landscape structure and the runoff response (e.g., signatures) are emergent patterns 

and reflect more than the mere balance equations that are embedded in many of today's process-

based models. Therefore the starting point for any regionalization study has to include an 

assessment of available data and the information that can be derived from this data based on the 

available database and the time frame of the study.  

Data available for application in ungauged locations exist from diverse sources. Among others, we 

have national data sources that are of varying availability and accuracy, field observations or 

assessments of local system characteristics and global data sets that are of typically low resolution. 

Every country has some type of national hydrological network, even though the spatial coverage 

of such gauging networks might vary widely. According to Munishi-Kongo (2013) as quoted in 

(Näschen et al., 2018),  data scarcity constitutes an obstacle in East Africa with regard to 

hydrological modelling. The main reasons being local water authorities facing numerous 

challenges, like accessibility of discharge stations (especially in the rainy season), limited staff, 

and insufficient equipment due to restricted funds. The field observations not only cannot provide 

data in the time span for such studies but are also costly.  Hence field observations are important 
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for hydrological assessment that could allow more skilled interpretation and reading of the 

hydrological landscape when coupled with other collected data (Blöschl et al., 2013). The 

remaining alternative is the global data sets despite the low resolution and subsequent uncertainties. 

 

2.2.1 Observed streamflow data 

Water resource management has been clearly recognized as critical to economic development in 

Africa, but surprisingly, the value of the data on which decisions are based is less well appreciated, 

with a decline in data collection and management in recent years (Houghton-Carr & Matt, 2006) 

despite the fact that the practical value runoff data is often much larger than their monitoring 

(Cordery & Cloke, 1992).  The challenges associated with hydrological data assessed through field 

observations, hydrological analysis, gauge readers testaments in a typical developing region during 

a flood study has revealed poor maintenance of hydrological equipment and surrounding landscape, 

poor data management architecture (collection, transmission, storage and format), and floods 

events that destroy hydrological equipment, inundation of roads restricting access to data collection 

during peak floods, as factors that hamper sustainable data collection. This results in inconsistent 

hydrological time series and availability of shortened length of the historical hydrological data 

source of random uncertainty that propagates through flood modelling processes (Ekeu-wei, 2018). 

Assessment of data quality and estimation of data uncertainty are therefore important steps in any 

modelling exercise. In some cases, while long term data on water levels may be available,the water 

level-discharge rating curves may be innacurate mainly due to inadequate discharge measurement 

campaigns, especially during high flow events. In other cases, the water level recorders may be 

blocked by silt or the gauging station area may experience scouring or deposition thus interfering 

with the accuracy of measurements.A simple way to assess data quality is by plotting and 

examining trends and comparing the runoff coefficient with the estimate values from global 

climatic datasets. 
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2.2.2 Rainfall data 

Precipitation is one of the primary controlling factors in the hydrological cycle and thus the 

reliability of hydrological simulations strongly depends on accurate representation of spatially 

distributed precipitation (Worqlul et al., 2014). In fact simulation of hydrological processes in river 

basins or catchments characterised by diversified landforms encounters the challenge of sparse and 

heterogeneous spatial distribution of rain gauges often cause weak simulation results (Cho et al., 

2009). Precipitation is essential for prediction in ungauged catchments, be it in the streamflow 

gauged or ungauged location. Although the duration of rainfall data is usually longer than the 

duration of streamflow measurements in most tropical-equatorial countries it is not likely to have 

high coverage of rain gauge stations in location where the population are not settled. Precipitation 

data are available at the global scale as a modelled and remotely sensed product down to the point 

scale at rain gauges (Worqlul et al., 2014). The growing availability of high-resolution satellite 

rainfall products is an opportunity for hydrologists to obtain more accurate precipitation data, 

particularly in developing countries and remote locations where conventional rain gauges are 

sparse and  weather radars are absent (Kidd, 2001).  

2.2.3 Evaporation 

Many rainfall-runoff need to estimate evaporation, and its estimation is often done on the basis of 

a potential evaporation PE. It is defined as the evaporation that would occur if there were no 

moisture constraint or if the system evaporated at full capacity. However, potential evaporation is 

never measured directly, it is either estimated using a number of other basic meteorological 

measurements or inferred from other meteorological data like pan evaporation data for example. 

There are several methods of estimation of potential evaporation. The Penman equation estimates 

PE on taking into account net radiation, air temperature, atmospheric humidity and wind speed 

values. The Priestley and Taylor equation is a simplified form of the Penman equation. It also 

requires the same data, except the humidity. The Penman-Monteith equation is an adaptation of the 

Penman equation that accounts for the effects of evaporation taking place from vegetated surfaces, 

resulting in a correction to the EP estimates based on the resistance of the plant canopy (stomatal 

resistance) to diffusion of water fluxes(Pereira et al., 2015). In this way, the Penman-Monteith 

equation can be used as a model for evaporation directly, or alternatively, if the stomatal resistance 

is taken at its minimum value, it can be used to estimate EP as well (Blöschl et al., 2013).  
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2.2.4 Catchments attributes that influence hydrologic behaviour 

Catchment characterization is typically focused on assessment and quantification of the aspects of 

physical and ecological structure that influence the storage, movement and release of water to 

evaporation and runoff (Blöschl et al., 2013). Hydrologists have tried for many years to develop 

some metrics upon which catchments could be describe, expecting that their behaviour, which 

could be define as the way their internal processes translate rainfall into runoff, could be 

understood. These metrics are based on the catchments physical characteristics ranging from 

topographic, soil-based, vegetation-based and human activities-related (W. C. Boughton & Askew, 

1968). The last two can be combined into land-use and land cover-based characteristics.  Much 

have been achieved in the understanding of the link between the physical components of a 

catchments and the hydrological response within, but very less could be taken as granted when it 

comes to using them theoretically to depict the catchment hydrological behaviour. 

 Catchment with steep land scape will experience a sharp accumulation of overland flow resulting 

in high peak flows at the outlet. This is explained by the availability of high potential energy 

accelerating the routing of the water toward the stream channel. The high speed of the routing 

favours surface runoff and interflow at the expense of infiltration and percolation. The shape of the 

catchment also contributes to the quick accumulation of water and increased runoff. In this case it 

is explained by the shortening or lengthening effect of the shape configuration of the catchment 

defined by shape factors such as Gravelius index. Compact catchment will exhibit quicker response 

to storm than fan-shaped catchment. A greater density of a stream network favours the runoff for 

any given rainfall, because stream channels conduct runoff efficiently they lead to high, sharp peaks 

and rapid recessions.  Antecedent soil moisture conditions strongly influence the rate at which 

rainfall infiltrates into the soil and contribute to the processes of runoff production. Natural 

vegetation can be very important in determining runoff amounts; in many instances it is the most 

important influence of all, after rainfall. Areas bare of vegetation can lose more than 40% of 

seasonal rainfall through runoff and for intense, individual storms the loss can be much greater. 

Areas with dense grass cover and tree canopy cover can retain as much as 99% of the rainfall that 

reaches the ground. Vegetation reduces the energy of raindrops making them less erosive and 

intercepts rainfall which is then re-evaporated. Thus natural vegetation works against the 

occurrence of runoff in several ways. The urbanisation  increases the impervious areas and reduce 

the soil storage and infiltration capacity (Klungniam, 2016), it can also the catchment storage due 
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to abstractions and rain water harvesting. Geological information can provide insight into deeper 

groundwater contributions to runoff, vegetation cover distribution can inform on runoff production 

mechanisms and the topography (slope) can in some extent explain flow routing patterns. For this 

reason, topography, soil characteristics, geology, land cover and land use are of primary interest 

for hydrological study. 

Many catchment descriptive attributes (CAs) related to the soil, topography, land use and land 

cover and climate have been widely used in regionalization studies.  Gibbs, Dandy and Maier, 

(2008) considered catchment area, average annual rainfall, average annual potential 

evapotranspiration (PET), location (in the form of drainage division, longitude and latitude), 

median elevation, average slope of the catchment, leaf area index, percentage of woody vegetation, 

plant water holding capacity (PWHC), and soil transmissivity as catchment description attributes. 

They found out that PWHC, median elevation, average slope, longitude average annual potential 

evapotranspiration and average annual rainfall has a significant relationship with baseflow index 

parameter of AWBM and average annual potential evapotranspiration, PWHC, latitude and 

longitude have significant relationships with baseflow recession constant of the same model. They 

recommended using as more descriptive attribute as possible for better results. Catchment area 

(km2), Perimeter (km), Mean Elevation (m), Minimum Elevation (m), Maximum Elevation (m) 

Range Elevation (m) Slope (%), Precipitation (mm), potential evapotranspiration (mm), River 

Density (km/km2) Forest (%), Shrubland (%) Grassland (%) Cropland (%), Salthardpans (%) 

Water bodies (%) have been considered in estimation of high, mean and low flow in Rwanda, the 

results showed that River density, mean catchment slope, minimum and maximum catchment 

elevation were among the dominant physiographical descriptors (Abimbola et al., 2017). In most 

of the studies, the choice of catchment attributes is done, based on the relevant data available.  

Today the availability of high-resolution terrain and land use/cover images from remote sensing 

database offers a great opportunity in data-scarce areas. 

 

2.2.5 Remote sensing data resources opportunities for hydrological studies 

Remote sensing gives an opportunity of observing land surface hydrologic fluxes and state 

variables over large areas particularly in regions where onsite stations networks are sparse. Over 

the last years, the study of land surface hydrology using remote sensing techniques has increased 
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tremendously with the launch of NASA’s Earth Observing System (EOS) and other research 

satellite platforms. In addition, developments in geographic information system (GIS) tools have 

enhanced the capabilities to produce and manage large databases describing the variability of land 

surface characteristics.  Remote sensing techniques also can be used to obtain spatial information 

in digital form on vegetation and rainfall at regular grid intervals with repetitive coverage. The 

integration of a hydrological model with the spatial data analysis capabilities of a digital terrain 

model like a DEM provides information that helps to understand and monitor hydrological 

processes. Digital Elevation Models (DEM), meteorological data and land cover/use data are some 

sources available through remote sensing used for hydrological modelling nowadays which could 

be used as alternative or the only data source for a regionalization study. Catchment area and 

topographic characteristics such as slope, elevation, drainage density, length among others can 

easily be derived from a DEM of the study. There are many sources of global elevation datasets 

providing very fine resolution DEMs at near-global scale readily. The GTOPO30 

(http://www1.gsi.go.jp/geowww/globalmap-gsi/gtopo30/gtopo30.html), NOAA GLOBE (The 

Global Land One-km Base Elevation project), The Shuttle Radar Topographic Mission (SRTM) 

Global Digital Elevation data, Space Borne Thermal Emission and Reflection Radiometer 

(ASTER) Global Digital Elevation Model (http://srtm.csi.cgiar.org/) are some of them.  

Another important type of information needed for regionalization studies is the state of land cover 

and land use over the catchments. Several satellite platforms equipped with specific imaging 

sensors are in operation have made available data sets of remote sensing imagery. LANDSAT, 

SPOT, IRS, IKONOS are some of the satellites platforms equipped with specific imaging sensors 

that are in operation. For modelling purposes, hydrologically relevant parameters need to be 

associated with the assigned land use classes. For modelling purposes, hydrologically relevant 

parameters (evaporation resistance, leaf area index etc.) need to be associated with the assigned 

land use classes (Blöschl et al., 2013). Considering the extent of the areas subject of hydrological 

investigations and the tediousness of digitizing, remote sensing is far better the method of 

acquisition of land/ use and land cover data. Some soil properties can be also acquired using remote 

sensing imagery. 

The more crucial input data for hydrological modelling is the meteorological data. The growing 

availability of high-resolution (and near-real-time), long time series availability and public domain 

availability satellite rainfall products can help hydrologists to obtain more accurate precipitation 
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results, particularly in developing countries and remote locations where weather radars are absent 

and conventional rain gauges are sparse (Dembélé & Zwart, 2016; Kidd, 2001). Satellite 

precipitation products are available at different timescale and spatial resolution. Some of these 

products frequently encountered in the literature are: the Tropical Rainfall Measuring Mission 

(TRMM), EUMETSAT’s Meteorological Product Extraction Facility (MPEF), Multi-Sensor 

Precipitation Estimate Geostationary (MPEG), the Climate Forecast System Reanalysis (CFSR), 

the NOAA/Climate Prediction Center morphing technique (CMORPH), precipitation estimation 

from remotely sensed information using artificial neural network (PERSIANN), the Naval 

Research Laboratory’s blended product (NRLB) (Luo, Wu, He, Li, & Ji, 2019; Worqlul et al., 

2014) and Climate Hazards Group InfraRed Precipitation with Stations (CHIRPS). There is also a 

need to provide for water loss through evaporation. Depending on the model, wind speed, 

temperature, relative humidity, solar radiation, albedo might be required for evaporation estimates 

instead of direct estimate of evaporation. The Prediction of Worldwide Energy Resource (POWER) 

(https://power.larc.nasa.gov/#resources) and daily Climate Forecast System Reanalysis (CFSR) 

(https://globalweather.tamu.edu/) are some example of global datasets estimates of precipitation, 

wind, relative humidity, and solar can be accessed. The version 4 Global operational Simplified 

Surface Energy Balance (SSEBop) Actual ET (https://earlywarning.usgs.gov/fews/datadownloads) 

is an example of high resolutions actual evaporation estimates available at decadal, monthly and 

yearly time scale that can be freely accessed.  

Although remote sensing data has been proven by some studies as an opportunity to improve 

hydrological simulation ( Dembélé & Zwart, 2016; Luo et al., 2019; Satgé et al., 2019), there are 

some investigations ( Bai et al., 2018; Dinku et al., 2018; Worqlul et al., 2014) that have highlighted 

poor correlations with rain gauges. Luo et al., (2019) performing the SWAT modelling of Lancang-

Mekong river used the gauge observations, Inverse Distance Weighted (IDW)data, TRMM and 

CHIRPS estimates. In the order of performance TRMM and CHIRPS were better followed by the 

gauge observations and IDW. NSE values were  0.95, 0.93, 0.86 and 0.87 respectively for 

calibration, and 0.86, 0.84, 0.77 and 0.75 respectively for validation on mouthly time scale.  Satgé 

et al., (2019) tested 12 satelite precipitation products to assess space-time consistency. They found 

out that six out of twelve (CHIRP v.2, CHIRPS v.2, CMORPH–BLD v.1, MSWEP v.2.1, 

PERSIANN–CDR, and TMPA–Adj v.7) could produce a realistic representation of regional 

precipitations despite recurrent spatial limitation over regions with contrasted emissivity, 



17 

 

temperature and orography. Besides, when these products were used as forcing precipitation data 

in lieu of  precipitation directely derived from the available observations gauge networks,  in nine 

out of ten of the cases considered, streamflow was more realistically simulated (Satgé et al., 2019). 

Dembélé and Zwart (2016), undertook a validation study  at the national level in Burkina Faso. 

They investigated on seven satellite-based rainfall products including Africa Rainfall Estimate 

Climatology (ARC 2.0), Precipitation Estimation from Remotely Sensed Information using 

Artificial Neural Networks (PERSIANN), Climate Hazards Group InfraRed Precipitation with 

Stations (CHIRPS), African Rainfall Estimation (RFE 2.0), African Rainfall Climatology and 

Time-series (TARCAT), Tropical Applications of Meteorology using SATellite (TAMSAT) and 

Tropical Rainfall Measuring Mission (TRMM) daily and monthly estimates. They concluded that  

the choice of product depends on the specific application and recommended PERSIANN, CHIRPS, 

and TRMM daily for application in flood monitoring in Burkina fasso. In contrast to these studies, 

Worqlul et al., (2014) found TRMM estimates, also used in the above studies, poorly correlated to 

the ground observation in the hight land of Ethiopia. Such finds are backed by Dinku et al., (2018) 

while conducting the validation of CHIRPS estimates over Eastern Africa. The performance is 

diversified with exhibition of poor observesions  over the mountainous areas of Ethiopia, Kenya 

and Tanzania, the costal area of Kenya and Tanzania and the locations around the lake Victoria. 

Bai et al., (2018) while comparing CHIRPS data with 2480 rain gauges found out that the satellite 

exhibits a diversified performance across the country.  Nevertheless, given the currently available 

precipitation gauge network, satellite precipitations are attractive and efficient tools to monitor 

local precipitation and to force impact modelling, such as snow-hydrological models (Satgé et al., 

2019). 

 

2.3 Rainfall-Runoff Modelling 

The main reason for hydrological modelling is our incapacity to measure in desired details over a 

wide range of space (Beven, 2012).  The measurement capabilities available today are limited to 

cover the range of space and time we desire. For this reason, we require techniques of inferring 

from available measurements in both space and time, into the future to assess the likely impact of 

future hydrological change, particularly to ungauged catchments where measurements are not 

available and into the future. A runoff model can be described as a set of equations that produces 



18 

 

estimations of runoff as a function of various parameters used for describing watershed 

characteristics (Devi et al., 2015). If many books describe the complex equations underlying 

hydrological processes, narrowing down these several equations into a few simpler ones that can 

still produce applicable result is the key task in hydrological modelling (Beven, 2012).  

Those equations that involve inputs and state variables such as drainage area, meteorological and 

catchment characteristics. Rainfall, potential evapotranspiration, temperature are the main 

meteorological inputs. Watershed characteristics include soil properties, watershed topography, 

vegetation cover, characteristics of the groundwater aquifer. The hydrograph which is interpreted 

as the integral response function of all upstream processes due to rainfall is the main output from 

a rainfall-runoff model is a hydrograph. The interpretation of a hydrograph provides useful 

information for decision-making in water resource planning, flood management or any water 

abstraction scheme.  

 

2.3.1 Types of models 

There is a diverse classification of hydrological models based on a specific characteristic of the 

model. Based on the randomness we have the stochastic models and deterministic models. When 

the model describes the random variation and incorporates the description in the predictions of 

output, the model is a stochastic model and if all input, parameters, and processes in a model are 

considered free of random variation and known with certainty, then the model is a deterministic 

model. Deterministic models will give same output for a single set of input values whereas, in 

stochastic models, different values of output can be produced for a single set of inputs. It can be 

classified as lumped and distributed model based on the model parameters as a function of space. 

Lumped models, take the entire river basin as a single unit where spatial variability is disregarded, 

generating the outputs without considering the spatial processes. a distributed model, on the other 

hand, can make simulations that are distributed in space by subdividing the entire catchment into 

smaller units, usually square cells or triangulated irregular network, giving the possibility to the 

parameters, inputs and outputs to vary spatially (Moradkhani & Sorooshian, 2008). Continuous 

and event-based models are distinguished based on whether the model produces output only for 

specific time periods or produces a continuous output.  According to Devi et al., (2015) a widely 

used classifications is empirical model, conceptual models and physically-based models. 
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2.3.1.1 Empirical models (Metric model) 

These models are observation oriented. They take only the information from the existing data 

making no use of the features and processes of the hydrological system and hence are also called 

data-driven models (Devi et al., 2015).  For this purpose, mathematical equations are not derived 

from the physical processes of the catchment but from concurrent input and output time series. 

These models are valid only in the context of their development. One example of this method is 

the unit hydrograph (Wheater et al., 2011). Statistically based methods use regression and 

correlation models and are used to find the functional relationship between inputs and outputs. 

Artificial neural network and fuzzy regression are some of the machine learning techniques used 

in hydro informatics methods (Devi et al., 2015). 

2.3.1.2 Conceptual methods (Parametric models) 

This model describes all of the component hydrological processes (Devi et al., 2015). It consists 

depending on the level of complexity of two, three interconnected reservoirs for simple structures 

and many more for highly complex, which represents the physical elements in a catchment. They 

are recharged by rainfall, infiltration and percolation and are emptied by runoff, evaporation and 

drainage among others. Semi-empirical equations are used in this method and the model parameters 

are assessed not only from field data but also through calibration which requires a large number of 

meteorological and hydrological records.  The curve fitting involved in the calibration process 

makes the interpretation difficult. This is due to the induced problem of model parameters non-

identifiability which causes the effect of land-use change difficult to be predicted with much 

confidence.  For a given model, many combinations of parameter values may give similar output 

as indeed different model structures may do. Similarly, it is difficult to represent catchment change 

if the physical significance of parameters is ambiguous. This has given rise to two major 

limitations. Parameters cannot be linked to catchment characteristics if they cannot be uniquely 

identified, and here is a major problem in application to ungauged catchments (Wheater, 2002). 

Many conceptual models have been developed with varying degree of complexity. Wheater (2002) 

noted that “a simple model structure does not reflect the complexity of the rainfall-runoff response 

and a complex model structure is not always supported by the available data. A balance between 

the complexity of the model and available information is crucial for successful model 

identification”. Hydrological conceptual rainfall-runoff are widely used for practical purposes in 

gauged and ungauged catchments. 
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2.3.2 Physically-based models 

These are mathematically idealized representations of the real phenomenon (Devi et al., 2015). 

They solve the governing equations for mass, momentum and energy in a spatially explicit way, 

drawing on as much laboratory-scale process understanding as possible (Blöschl et al., 2013). 

These are also called mechanistic models that include the principles of physical processes. It uses 

state variables which are measurable and are functions of both time and space. The hydrological 

processes of water movement are solved numerically using a finite-difference or a finite element 

spatial discretisation (Wheater et al., 2011). Their calibration does not require extensive 

hydrological and meteorological data but the evaluation of large number of parameters describing 

the physical characteristics of the catchment are required. Such models require large amount of 

data such as initial water depth, soil moisture content, topology, topography and dimensions of 

river network among others. Physically-based models can overcome many defects of the other two 

models because of their parameters having physical interpretation (Devi et al., 2015). It can provide 

large amount of information even outside the boundary and can be applied for a wide range of 

situations. However the huge amount of data required makes their use very limited for practical 

applications outside well documented catchments. 
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3 Methodology 

3.1 Data and study area 

The study area consists of the catchments located in the humid part of Kenya located essentially 

on the slopes of the Mount Kenya, The Mont Elgon and Aberdare. The CAs was based on 

landscape, land use/ land cover and soil attributes. The streamflow of these catchments has been 

purchased from the Water Resources Authority (WRA). The daily precipitation used in this study 

has been extracted from CHIRPS rainfall data using the appropriate packages from R software. For 

the evapotranspiration, it has been computed using INSTAT from NASA POWER minimum and 

maximum temperature, wind speed, relative humidity and solar radiation data. The catchments 

where selected based on their location, their size and data availability. Small catchments were 

targeted to minimize the effect of sharp heterogeneity that can occur across the big catchments’ 

area on the modelling. 

  

3.1.1 Study area 

3.1.1.1 Presentation of the study area 

The study area extends to 112136 KM2, located between 37.818 and 34.44 longitude west and 

between -1.481 and 1.222 latitudes.  It covers the humid part of the country, essentially located 

around the Mountains. It includes the headwaters of Kenya’s five primary catchment areas, all 

arising in five indigenous mountain forest areas. These five forest areas are commonly referred to 

as Kenya’s five Water Towers consist of the Mau Forest Complex, Mount Kenya, the Aberdares, 

Mount Elgon and Cherangani. The Mau Forest Complex is the source of Mara, Njoro and Sondu 

rivers. The Mara River sustains the Masai Mara Game Reserve and is key to the survival of wildlife 

in Serengeti National park in Tanzania and Masai Mara Game Reserve. The Sondu river runs the 

Sondu Miriu Hydropower complex. The Njoro River feeds the Lake Nakuru which is an important 

wildlife refuge and centre of tourism. The Tana River generates 70% of hydropower in Kenya and 

provides water supply to Nairobi Mt. Kenya is the source. It also supports agricultural development 

along the Tana Basin. Mt. Kenya supports numerous streams and springs that support commercial 

and subsistence farming on the lower slopes. Aberdare Ranges and Mt. Kenya water towers provide 

water to the significant horticultural and floricultural industries, which generate high export 
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revenue. The Nzoia River, which drains into Lake Victoria, originates on Mt. Elgon (World Bank, 

2006).  

 

Figure 1: Study area 

3.1.1.2 Climate and vegetation 

The overall country’s climate is controlled by the Inter-Tropical Convergence Zone (ITCZ). The 

climate and soils formations are highly correlated to the altitudes. The climate ranges from humid 

in the highlands to dry sub-humid in the midlands. The temperature ranges from less than -4 degrees 

centigrade at Afro Alpine High lands (more than 3050m) to 28 degrees centigrade in the midlands 

(1200-1500m). The mean annual temperature is less than 10 in the Alpine high lands and ranges 

from 20 to 22 in the Midlands.  The annual precipitation reduces with the altitudes. In the high land 

excluding altitudes above 3050, the annual rainfall and annual potential evapotranspiration vary 

between 1100 and 2700 and between 1200 and 2000 respectively under a climate essentially 

classified as humid. The vegetation is moist forest with a very high plant growth potential. The 
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midlands are dominated by sub-humid and dry semi-humid climates. The annual rainfall ranges 

from 1000 to 1600 mm and from 800 to 1400 respectively. For the potential evapotranspiration, it 

ranges from 1300 to 2100 in the sub-humid areas and from 1450 to 2200 in the semi-humid areas. 

Both subhumid and semi-humid areas are covered moist and dry forest and with dry forest and 

moist woodland respectively. The aridity index (P/PET) is very high (>80%) in the Afro Alpine 

high lands high in the sun humid zone just below (65-80%) and medium (50-65%) in the lower 

part of the midlands dominated by the semi-humid climate. The uppermost part, at the peaks of 

mountains is covered with typical vegetation called Mooreland. 

 

Figure 2: climatic zones 
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3.1.1.3 Soils 

Most soils in the study area are volcanic in nature and have not only high infiltration rates but are 

also resistant to erosion and highly permeable. The higher parts such as mountains and escarpments 

comprise of histosols, humic andosols and lithic leptosols that are poorly drained and are developed 

on olivine basalts and ashes of major older volcanoes. On the hills and minor scarps at the eastern 

part, lies a very diverse type of soils dominated by nitisols forming a ring around the histosols and 

followed by luvisols and phazoems at the small extent in the decreasing order of the altitude. The 

soil types in the south-western part of the study area are andosols and nitisols occupying most part 

of the Mao forest complex. The gleysols, the ferrasols, the cambisols, the andosols and the nitisols 

are the most represented soil types in the north-western part of the study area. The majority of the 

study area is dominated by nitisol. 

 

 

Figure 3: Soil map 
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Figure 4: Land use/cover map 

 

3.1.2 Data 

The data gathered for this study is composed of: 

Kenya Digital Elevation Model (DEM): The digital elevation model (DEM), was from global 

public data sets. The Shuttle Radar Topography Mission (SRTM) provides a high-resolution digital 

topographic database, and SRTM30 data, a 30 arc-second resolution global topography grid was 

selected.  

The Harmonized continental SOTER-derived database of Kenya (KEN_SOTWIS) (Batjes et 

al., 1984): It is a GIS-based database which provides a harmonised set of soil parameter estimates 

for Kenya. The land surface of the country has been characterised using 397 unique SOTER units 

that correspond to 623 soil components. Soil parameter estimates are presented for each component 

soil of a SOTER mapping unit for depth intervals of 0.2 m up to 1 m depth. They include; organic 
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carbon, total nitrogen, pH (H2O), CECsoil , CECclay , base saturation, effective CEC, aluminium 

saturation, CaCO3 and CaSO4 content, exchangeable Sodium percentage, electrical conductivity 

of the saturation paste (ECe), bulk density, sand, silt and clay content, content of coarse fragments 

(>2 mm), and available water capacity (-33 to -1500 kPa; cm/m).  

Land use/ cover data: It is a prototype high-resolution Land Cover map over Africa, released in 

September 2017. It has been developed at 20m, based on 1 year of Sentinel-2A satellite 

observations from December 2015 to December 2016. The main objective to make public this 

prototype is to collect user’s feedback for further improvements. The legend of the S2 prototype 

LC 20m map of Africa 2016 was built after reviewing various existing typologies (e.g. LCCS, 

LCML…), global (e.g. GLC-share, GlobeLand30) and national experiences (Africover, SERVIR-

RMCD). The legend includes 10 generic classes that appropriately describe the land surface at 

20m: "trees cover areas", "shrubs cover areas", "grassland", "cropland", "vegetation aquatic or 

regularly flooded", "lichen and mosses / sparse vegetation", "bare areas", "built-up areas", "snow 

and/or ice" and "open water". 

National Aeronautics and Space Administration Prediction of Worldwide Energy Resource 

(NASA POWER) Agroclimatology data: It consists of daily minimum and maximum 

temperatures, wind speed and relative humidity at 2m and All-Sky Insolation Incident on a 

Horizontal Surface data.  These data were obtained from the NASA Langley Research Center 

(LaRC) POWER Project funded through the NASA Earth Science/Applied Science Program. 

CHIRPS daily rainfall data: Climate Hazards Group InfraRed Precipitation with Station data 

(CHIRPS) is a quasi-global rainfall dataset available over more than thirty-year. CHIRPS 

incorporates 0.05° resolution satellite imagery with in-situ station data to create gridded rainfall 

time series for trend analysis and seasonal drought monitoring (Funk et al., 2015). The CHIRP/S 

algorithm combines three main data sources: (1) the Climate Hazards group Precipitation 

climatology (CHPclim),  which is a global precipitation climatology at 0.05◦ latitude/longitude 

resolution estimated for each month based on station data, averaged satellite observations, 

longitude, latitude and elevation; (b) Thermal InfraRed-based Climate Hazards group Infrared 

Precipitation (CHIRP); and (c) in situ rain-gauge stations’ measurements (Dinku et al., 2018; Funk 

et al., 2015).  The particularity of CHPclim from other precipitation climatologies is its usage of 
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long-term average satellite rainfall fields as a guide to deriving climatological surfaces. This 

improves its performance in mountainous countries like Ethiopia (Dinku et al., 2018). 

Streamflow data: The streamflow data was purchased from the Water Resources Authority 

(WRA). The length of records spanned most between 1940 and 2018. 

The version 4 Global operational Simplified Surface Energy Balance (SSEBop) Actual ET: 

It is a high resolution daily actual evaporation. 

 

3.1 Methods 

3.1.1 Topographic characteristics 

The Kenya Digital Elevation Model (DEM) was used to delineate the selected catchments within 

the study and to identify their topographical characteristics using Arc SWAT and other tools from 

Arc map. The catchment delineation was done using the gauging stations as outlets.  

 

3.1.2 Soil parameters  

The Harmonized continental SOTER-derived database of Kenya (KEN_SOTWIS) Database has 

been used to derive the areal percentages of the different soils of the study area for each catchment.  

Using the individual parameter of each soil, areal values have averaged sand, clay and silt 

percentage, hydraulic conductivity, AWC and TOC have been defined. 

 

3.1.3 Land use/ cover indices 

Land use/cover data map was used to define the percentage of the dominant land use and cover 

classes including as Tree cover area, Built-up area, cropland, Shrub cover area and grassland area. 

This was done using the relevant tools in Arc-GIS. 

 

3.1.4  PET 

Daily values of potential evapotranspiration were estimated from solar radiation, wind speed, 

minimum and maximum temperatures and relative humidity using Penman-Montheit equation in 

the INSTAT 3.37 software.  This data was downloaded from NASA POWER global dataset, using 
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the centroid of each catchment as point location. It happened that there are missing values for solar 

radiation one few days, the values for the previous or next day was thus assigned to those days.  

The use of version 4 Global operational Simplified Surface Energy Balance (SSEBop) Actual ET 

has been attempted, since the time span of the availability is short and on monthly basis, long term 

ratio with the Penman-Montheit estimates has been calculated and affected to each month. 

 

3.1.5 Rainfall 

CHIRPS daily estimations of rainfall have been used for this study. Due to the high spatial 

resolution (0.05° × 0.05°) of the CHIRPS products (Africa daily precipitations in  .tif format Raster 

files) downloaded from http://chg.geog.ucsb.edu/, stations were defined using coordinates of one 

point selected in every grid covering a catchment. Daily rainfall estimates were extracted for each 

station using the coordinates of the stations using the specific packages in R 3.5.4 software. The 

lumped daily precipitation was then estimated as the areal average over the catchment after 

estimation of the part of catchment that overlaps with each specific grid. The data is available from 

1981 up to date.   

  

3.1.6 Streamflow data  

The streamflow data purchased was preliminarily analysed for patterns consistency using plotting. 

The length of records spanned most between 1940 and 2018.  The data contains gaps. The value 

for missing data (-9999) was used to fill the gaps.  The runoff coefficient Q/P was computed and 

analysed with respect to global annual water balance dataset available in the FAO’s Local Climate 

Estimator (New_LocClim_1.10). This was done on the part of data available from 1981 since the 

CHIRPS rainfall estimates availability starts from that year.  
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3.1.7 Selection of the catchments 

 Thirty catchments were preliminary selected based on their size and availability of streamflow 

record for both calibration and simulation periods. The selection of the catchments considered also 

the need to cover a wide range of locations and morphological types and for each catchment to be 

less than 1000km2. The reason was to reduce uncertainties that could emerge from the occurrence 

of localised rainfall since the model uses lumped rainfall and to ease the abstraction of physical 

catchment descriptors. Since AWBM is a lumped model, spatial variability can result in poor model 

performance especially in very large catchments. The stream flows in the selected catchments were 

assumed to be unaffected by large scale abstractions, storages or effluents. In addition 

consideration was not given to land-use change since most of catchments are located in 

mountainous forested area. It suggests that the land cover/cover changes have not altered 

significantly the streamflow signature. Geographical proximity and landscape aspect were 

considered in order to make the catchments fairly homogeneous climatically, physiographically 

and hydrologically. The study catchments were of similar scale and were geographically spread 

across humid and sub-humid areas, hence they exhibited differences in land cover, topography, soil 

types and drainage density network structure. The study aimed at relating these different features 

to the variations in the hydrological responses of these catchments.  

 

3.1.8 Characterization of the catchment 

Let alone the distance-based regionalisation methods, other methods that can be put together into 

the similarity-based methods require the identification of some quantifiable physical features of 

catchments that would explain their hydrological response. A key choice when performing such 

methods is which of the catchment physical features are best for predicting model parameters. 

Unfortunately, it is frequently uncertain which landscape attributes will best explain each of the 

different rainfall-runoff model parameters. It is common therefore to initially consider a wide range 

of possible descriptors and then refine to a smaller subset using some form of statistical analysis 

and hydrological reasoning (Susana, 2014). Considering the time frame of the study, there is very 

little to expect from in-situ data collection, therefore the descriptors were limited to existing 

information on the physical catchment attributes. The major issue with that situation is the bias 

incurred in the quantification of CAs since it is tedious to achieve data concurrency for all the 
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catchments. It has been thus assumed that changes in the study area did not alter significantly the 

hydrological behaviour of the catchments. Based on the literature, some CAs expected to be 

hydrologically relevant in the study area and which were available from existing data sources was 

defined and used in the study. For the seventeen catchments selected, 14 CAs (6 topography based, 

5 land cover based and 4 soil type based) were therefore derived using the DEM, soil and land 

cover maps to represent topography, soil and land use.  

 

3.1.9 Selection of the model structure 

The rainfall-runoff model selected for use in regionalisation studies is usually a lumped conceptual 

model. Physically-based models require high-resolution catchment physical description, which can 

only be provided at experimental scale according current data collection capability. It could not 

hence satisfy the objectives of this study which is to come up with a simple technic for estimation 

of runoff in ungauged catchments. Very few studies have employed physically-based hydrological 

model for runoff estimation in ungauged catchments. The use of conceptual models has many 

advantages including the ease with which they can be constructed, time and information required 

for implementation and their computational efficiency (Susana, 2014). Examples of conceptual 

models used in the context of PUB mentioned in (Blöschl et al., 2013) include, among others, PDM  

Bulygina et al., 2009), HBV ( Seibert, 1999), GR4J (Oudin et al., 2008), IHACRES ( Post and 

Jakeman, 1999) and AWBM ( Boughton and Chiew, 2007). This gives evidence that wide range 

of conceptual model is used to make estimations of streamflow in ungauged catchments. A large 

number of model structures and the fact that each modeller tends to praise his achievement makes 

it difficult to choose a particular model for a specific purpose. The number of arguments on which 

model selection is often justified includes the modellers’ past experience with a given model 

structure or its structure and its good performance in a similar climatic zone or region and 

applications. The accessibility of the model whether it is open source or requires to pay for the 

license is also another reason for model structure choice. Other aspects to be taken into account in 

the process of the model structure selection encompass among others, input data requirement, 

hydrological realism and adequate model complexity. 
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A highly complex model with poorly constrained parameters due to limited data availability has as 

consequence high degree of freedom that causes models to behave like “mathematical marionettes” 

(Kirchner, 2006).  Over-parameterisation of the model structure can compensate for data error and 

structural deficiencies, leading to many different parameter sets presenting similar good 

performance but that often incapable of producing good results for conditions where the model 

have not been trained in  (Clark, Kavetski, & Fenicia, 2011). There are many situations where the 

model simulation fits the observed data well, but where the model structure does not reflect the 

essential hydrological processes observed in the catchment and thus lacks realism. In these cases, 

when the model is applied somewhere else (either in time or in space) large bias and uncertainties 

may be introduced. This makes hydrological realism and model structure very important in PUB 

context (Susana, 2014). Even if a model works well for certain catchment, it is possible that the 

same model might not perform well on another catchment in the context of prediction in ungauged 

catchments as the dominant runoff mechanisms are different.  The AWBM model has been chosen 

for this research based on its simplicity, seven parameters most of which are available and 

accessible, its development to allow for runoff prediction in ungauged catchments and the good 

results compared to other models requiring more of parameters in humid catchments of Australia 

(Blöschl et al., 2013).  Makungo et al., (2010) used Mike 11 NAM and AWBM in the Limpopo 

river basin. He concluded that the results for both models were good and comparable and that the 

method can be used to fill the gap of data for the river streamflow.  

 

3.2 Australian Water Balance Model (AWBM) 

The Australian water balance model (AWBM) was developed in the early 1990s and has been used 

extensively throughout Australia. It is a lumped, conceptual rainfall-runoff catchment water 

balance model with interconnected storages and algorithms that mimic the underlying hydrological 

processes used to describe the movement of water into and out of storages. It allows calculation of 

runoff from rainfall at daily time increments and can be used for water yield and water management 

studies. The model uses three surface stores, representing the impacts of antecedent wetness and 

spatial variability of the abstractions, for modelling rainfall-runoff relationships. It is developed 

from the concept of saturation overland flow generation of runoff. The rainfall is added to each of 

the surface stores and evapotranspiration is subtracted (Boughton, 2004). If there is any excess 

from any store, it becomes runoff and is divided between surface runoff and baseflow. It has seven 
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parameters some of which can be estimated from observed streamflow, rainfall and evaporation 

data (W. Boughton, 2004). AWBM also has an automated calibration methodology with a choice 

of six algorithms and seven objective functions. The software offers 6 calibration optimisers, a 

choice of 8 objective functions and 3 types of data transformation for comparison against observed 

data. The calibration optimisers included in the library are Uniform random sampling Pattern 

search, Multi start pattern search, Rosenbrock search, Rosenbrock multi-start search, Genetic 

algorithm, Shuffled Complex Evolution (SCE-UA) and AWBM custom optimiser. The objective 

functions provided include Nash-Sutcliffe criterion (Coefficient of efficiency), Sum of square 

errors, Root mean square difference about bias, Absolute value of bias, Sum of square roots, Root 

mean square error (RMSE), Sum of square of the difference of square root, Sum of absolute 

difference of the log. There are also three  options available for calibration based on two objective 

functions which are Flow duration curve, Runoff difference in % and Base flow method 2 

(Boughton, Chapman and Maxwell).The AWBM is part of the Rainfall Runoff Library, a toolkit 

developed by the Cooperative Research Centre for Catchment Hydrology (CRCCH), Australia. 

Sacramento, Simhyd, SMAR and TANK rainfall-runoff models are also included in the library. It 

was accessed freely from https://toolkit.ewater.org.au/. 

 

3.2.1 Model structure 

The model computes surface runoff and baseflow w components of streamflow at daily time 

steps. The model generates runoff by saturation excess from three surface stores. Each store is able 

to produce runoff independently of the others allowing for partial area runoff. The parameters of 

surface storage are the three capacities and their partial areas. Those are C1, C2 and C3 that extent 

to partial areas of the catchment A1, A2 and A3 respectively (A1 + A2 + A3 = 1.0). The average 

surface storage capacity CE is the single parameter that determines how much rainfall becomes 

runoff. This single parameter is disaggregated into a set of capacities and partial areas using a fixed 

pattern observed using a set of quality data from some catchments. The sum of the three products 

of capacity and partial area makes up the average surface storage capacity;  

C1*A1 + C2*A2 + C3*A3 (W. Boughton, 2004). The excess from the surface stores which is the 

runoff generated, is divided into surface runoff and baseflow recharge by the baseflow index (BFI). 

The discharge from baseflow storage at daily time step increments is determined by the baseflow 

recession constant (Kb) and calculated as (1 – Kb) times the amount in baseflow store (BS). The 

https://toolkit.ewater.org.au/
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discharge from the surface runoff store (SS) is calculated as (1.0 – Ks) times the amount in the 

surface store. Ks is the daily surface runoff recession constant. The structure and parameters of 

AWBM are presented below. 

 

Table 1: Description of the AWBM model parameters 

Parameter Description 

A1 Partial area of smallest store 

A2 Partial area of middle store 

A3 Partial area of largest store 

BFI Baseflow index 

C1 Surface storage capacity of smallest store 

C2 Surface storage capacity of middle store 

C3 Surface storage capacity of largest store 

Kbase Baseflow recession constant  

Ksurf Surface runoff recession constant 

Description of the AWBM model parameters (W. Boughton, 2003)  

 

Figure 5: AWBM model structure adapted from (Boughton, 2004)  

P = Precipitation 

E= Evapotranspiration 

BFI= Baseflow index 

Kbase=Baseflow 

recession constant 

Ksurf=Surface 
recession constant 

BS= Baseflow store 

SS= Surface store 

 

SS  

 

BS  

 

 

  

Qs = (1.0 – Ksurf)*SS 

 

  

Qb = (1.0 – Kbase)*BS 
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3.2.2 Calibration of AWBM 

 

The process of selecting suitable values of model parameters such that the hydrological behaviour 

of the catchment can be simulated closely is termed as model calibration (Moore & Doherty, 2005).  

A significant feature of the AWBM has been the development of calibration procedures based on 

the structure of the model, rather than using trial and error testing of different sets of parameter 

values. This method of calibration summarised below from (Boughton, 2003) is operated by 

choosing the AWBM custom calibration features. It has two optimisation parameters including the 

maximum average storage capacity and the conversion criterion of the sum of the square roots 

between calculated and actual daily runoff values. This optimisation method has been chosen 

because it could allow for error quick detection, gives the same parameter values in the same 

condition and is based on the internal structure of the model. This was also to minimise the problem 

of equifinality (Beven, 1993). Manual adjustments were done to improve the models. Due to the 

context of data scarcity and the assumption that the catchments are not impaired in their 

hydrological behaviour and land-use changes are minor, different periods have been used for 

calibration according availability of data and concurrency with CHIRPS rainfall estimates. The 

parameters to be determined are the surface storage capacities and their partial areas, the surface 

recession constant and two baseflow parameters. The method of calibration has been improved 

from one version to another.  

3.2.2.1 Surface storage capacities and partial areas 

The main feature of the automatic calibration procedure was the development of a fixed pattern of 

surface storage capacities and partial areas that could be represented by a single parameter: the 

average surface storage capacity (Ave = C1*A1 + C2*A2 + C3*A3). First, default values for the 

baseflow parameters, BFI and Kbase, and the surface runoff recession constant Ksurf are assumed 

and then, a preliminary calibration of the surface stores is achieved by adjusting total calculated 

runoff to match the total actual runoff. By applying earlier methods of calibration to many 

catchments over several years on a number of high-quality data sets, it was found that the average 

value of surface storage capacity was more important to calibration than the individual set of 

capacities and partial areas.  
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An average pattern was found that could be used to disaggregate an average capacity (Ave) into 

three capacities and three partial areas as follows:   

Partial area of smallest store  A1 = 0.134 

Partial area of middle store  A2 = 0.433 

Partial area of largest store  A3 = 0.433 

Capacity of smallest store  C1 = 0.075*Ave 

Capacity of middle store  C2 = 0.762*Ave 

Capacity of largest store  C3 = 1.524*Ave 

 

3.2.2.2 Baseflow index and recession parameters 

After the surface store parameters are obtained, the baseflow parameters (BFI, Kbase) and the 

surface runoff recession constant (Ksurf) are calibrated in that order and then a second time in that 

order, using a measure of the difference between calculated and actual daily runoff hydrographs. 

The error measure is the sum of the square roots between calculated and actual daily runoff values, 

summed over the period of calibration data, with trial and error adjustments of BFI, Kbase and 

Ksurf to minimize the error function. In this way, the parameter that generates runoff (surface 

storage capacity) is calibrated against the amount of runoff, and the parameters that affect the 

temporal pattern of runoff (BFI, Kbase and Ksurf) are calibrated against the pattern of runoff.  

 

3.3 Derivation of a Regional Model Parameter Set  

A statistical model was established relating each parameter (dependent variables) to a set of 

catchment attributes (independent variables), on the assumption that the uniqueness of a catchment 

can be pictured in its specific combination of CAs. Model parameters for the ungauged catchments 

of the humid area of Kenya can then be estimated, for AWBM model, using the derived regression 

model and the corresponding set of CAs for the ungauged catchment. Once a model parameter set 

has been calculated for the ungauged catchment, not only daily streamflow can then be simulated 

but also the physical basis of the AWBM model can then be discussed. This process was applied 

to a part of the data to allow for the proxy-basin test (KlemeŠ, 1986). Over the seventeen 
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catchments four was selected for testing and thus not using the establishment of the regional model 

and considered as ungauged catchments. These included KIBOS (1HA04), THIKA (4CB05), 

MOIBEN (1BA01) and ENDOROTO (1CB08). It involved the following sequential steps: 

 

3.3.1 Development of MPs-CAs Relationships 

The parameters of conceptual models are mostly designed to have a physical interpretation. For 

example, the parameters Ksurf, Kbase and BFI of AWBM are said to be derivable from the 

hydrograph (W. Boughton, 2004).  Nevertheless little is known on the nature of the relationship 

between model parameters and the catchment attributes (Susana, 2014). This makes the selection 

of relevant catchment attributes for the description of the catchment hydrological behaviour a non-

trivial task, despite the statistical techniques available to aid this process. Moreover, statistical 

relationships must also have physical meaning if they are to be reliably extrapolated to ungauged 

catchments (Beck et al., 2016).When the statistical relationships found cannot be explained through 

hydrological reasoning, it leads to erroneous predictions. An example can be found in (W. 

Boughton & Chiew, 2007) where a statistical regression equation meaning that an increase of  PET 

would increase the streamflow was invalidated by the authors. This situation can occur and go 

unnoticed when the understanding of the misleading equation is not obvious. For this reason, 

relationships were established between CAs and PMs and between PMs among themselves and 

CAs among themselves. Moreover for an optimal statistical model, the independent variables 

explaining the dependent variable should not be correlated. The occurrence of model parameters 

interdependencies in the development of the regression equations undermines significantly the 

predictive capability of the regionally calibrated models (Kokkonen et al., 2003; Xue et al., 2017). 

This can be noticed and considered if this approach is followed. 
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3.3.2 Multiple linear regression 

Regression analysis is a statistical tool for the investigation of relationships between variables. 

It is of interest to find a causal effect of one variable upon another. Multiple regression is a very 

flexible method and may be suitable when a quantitative dependent variable is in relationship to 

more independent or predictor variables.  In hydrology, the use of multiple regression models to 

establish a link between hydrological parameter or response signature and a set of catchment 

descriptors is a long-established practice (Kjeldsen and Jones, 2009) as cited in (Susana, 2014). 

The independent variables assumed to provide information on the behaviour of the dependent 

variable are included in the regression model and regression parameters are estimated given 

observation data. The basic formula of a multiple regression model can be written as follows: 

 

 𝒀 =  𝜷𝟎 + 𝜷𝟏𝑿𝟏 + 𝜷𝟐𝑿𝟐 + 𝜷𝟐𝑿𝟐 + 𝜷𝟑𝑿𝟑 + ⋯ + 𝜷𝒑−𝟏𝑿𝒑−𝟏 + 𝜷𝒑𝑿𝒑 + 𝜺 (Eq. 1) 

 

Where Y is an observable random variable; X1, X2, Xp-1 and Xp are p observable non-random 

variables assumed to be measured without error,  𝛽0, 𝛽1, 𝛽2, 𝛽3, 𝛽𝑝−1, 𝛽2 are unknown model 

parameters also known as regression coefficients (or partial regression coefficients), and 𝜀 is an 

unobservable random variable, referred to as the error term, that represents the discrepancy 

between and the predicted values of the dependent variable. Statistical assumptions about having 

to be made for model formulation. It is usually assumed that 𝜀 has zero mean,𝐸(𝜀) = 0 constant 

variance, 𝜎2, and that its terms are independent of each other and of the value of the dependent 

variables. Although these error assumptions are modest, additional assumptions such as normality 

in distribution𝜀~𝑁(0, 𝜎2) have to be added for the purposes of making confidence statements and 

hypothesis testing.  Multiple regression is commonly used when one dependent variable and several 

independent variables are available and it is desired to find a linear model for predicting unobserved 

values for the dependent variable. A model has, therefore, to be developed that does not have to 

contain all of the independent variables. The development of the right model is normally 

complicated by the fact that in most cases the independent variables are not statistically 

independent of each other but are correlated. The first step in regression analysis, therefore, is to 

determine the correlation matrix of the independent variables. 



38 

 

3.3.3 Selection of catchment attributes 

There are several ways to derive the statistical relationships relating response signatures to 

catchment descriptors. Many CAs are presumed to be able to explain predictors the MPs resulting 

in a long list of physical attributes. For this reason, the classical multiple regression method can be 

tedious to implement. An automated procedure is obviously preferred to an exhaustive variable 

selection. The forward entry method and the backward removal method are applied. In the forward 

entry method, the established significant single relationships are extended by forcing additional 

CAs in the relationships until the last added CA does not significantly contribute to the relationship. 

In the backward removal method, relationships incorporate all CAs after which these ones are 

stepwise reduced until a significant relationship is obtained. Next, the relationships for each model 

parameter were evaluated from a hydrological context since statistically significant relationships 

do not necessary have physical explanation. Finally, where possible, for each model parameter a 

relationship is selected with corresponding correlated CAs.  

 

3.3.4 Validation of MPs -CAs Relationships 

For the purpose of evaluating the usefulness of the developed estimation equations, the model 

parameter values (PMs) of all the calibration catchments were computed, including the four 

catchments not used in their establishment process. Thereafter, the calibrated parameter values and 

those obtained through estimation using the derived PM-CA relationships were statistically 

compared for error margins. NSE and r2 are the performance mesasures used. The successful 

development of the relationships between PMs and CAs could make it possible to regionalise 

AWBM model by providing a regional parameter set where model parameter values captured in 

the uniqueness of the combinations of catchment characteristics can be calculated. The 

characteristics can then be used with the developed relationships to estimate model parameters 

which, together with daily time series of rainfall and evapotranspiration, can be used to simulate 

daily stream flows in any ungauged catchment of the humid areas of Kenya using the AWBM 

model. In addition, relating model parameters to catchment characteristics makes it possible to 

analyse the physical basis of the AWBM model. Stepwise regressions was carried out using the 

R_3.5.3 software. 
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3.3.5 Estimation of Daily Stream Flows 

The estimation of the model parameters only is not really enough to give tangible conclusion about 

the performance of the regionalisation method. The estimated models parameters are therefore used 

to simulate the daily streamflow for the pseudo-ungauged catchments over the period of calibration 

and validation. The calibrated values are used as default values for unrealistic or non-estimable 

parameter. The pseudo catchments where selected through a random split of the data. These 

included   KIBOS (1HA04), THIKA (4CB05), MOIBEN (1BA01) and ENDOROTO (1CB08). 

Even though the selection has been done randomly, the catchments selected were special. 1CB08, 

1HA04 and 1BA01 are located fare from the majority and 4CB05 is the smallest catchment.  

However, since these catchments are in fact gauged, the estimated daily stream flows were then 

compared with the observed (recorded) daily stream flows in order to assess the accuracy of the 

estimations. The accuracy of these estimations was evaluated by comparing the values of the 

coefficients of determination, R2 of estimated and observed streamflows as used for the prior 

calibration and validation. 

 

3.2.6 Assessment of Model Performance 

Comparison of predicted and observed hydrographs is a necessary step in assessing the 

performance of any model. An objective function is one of the common means of evaluating model 

performance. It is an equation used to compute the numerical measure of the difference between 

simulated model output and the observed (measured) catchment output. 
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3.2.6.1 Correlation Coefficient (r)  

Correlation analysis is a statistical tool used to assess the degree of dependence between variables. 

Correlation coefficient (r) summarises in one number the direction and magnitude of the 

correlation. It is also a numerical means of assessing the performance of a model. The value of the 

coefficient, r, varies from zero to unity; with the highest value unity indicating the best 

performance, |𝑟| ≤ 1. 

𝑟 = 1 −
𝑆𝑠𝑖𝑚

2

𝜎𝑜𝑏𝑠
2  

(2) 

Where: 

r is the correlation coefficient between the observed and simulated streamflow 

 𝑆𝑠𝑖𝑚
2

 is the standard error of the simulated streamflows 

𝑆𝑠𝑖𝑚
2 =

√∑ (𝑄𝑠𝑖𝑚,𝑖 − 𝑄̅𝑠𝑖𝑚,𝑖)
2𝑛

𝑖=1

𝑛 − 1
 

(3) 

𝜎𝑜𝑏𝑠
2

 is the standard deviation of the observed streamflow 

 

3.2.6.2 Nash-Sutcliffe Coefficient of Efficiency (NSE) 

This is the most commonly used objective function for assessing the goodness of fit after 

model calibration or simulation. It measures how well the simulated and observed flows 

correspond.  

It is given by: 

NSE =
∑ (Qobs,i − Qsim,i)

2n
i=1

∑ (Qobs,i − Q̅obs,i)
2n

i=1

 

(4) 

Where: 

 𝑄𝑜𝑏𝑠,𝑖 is the observed streamflow on the day i,  𝑄𝑠𝑖𝑚,𝑖 is the simulated streamflow on the day i, 

𝑄̅𝑜𝑏𝑠,𝑖 is the mean of the observed streamflow on the day i. 
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NSE values of 1 indicate perfect fits. NS values between 0.9 and 1 indicate that the model 

performs extremely well. Values between 0.8 and 0.9 indicate that the model performs very well 

while values between 0.6 and 0.8 indicate that the model performs reasonably well. Negative NS 

values indicate that the observed mean discharge is a better predictor than the model simulation. 

 

3.2.6.3 The Relative Volume Error RVE 

 

RVE = (
Qobs,i − Qsim,i

Qobs,i
) 

(5) 

Where: 

 𝑄𝑜𝑏𝑠,𝑖 is the observed streamflow on the day i, 

 𝑄𝑠𝑖𝑚,𝑖 is the simulated streamflow on the day i. 

A relative volume error between -5% and 5% indicates that a model performs well while a 

relative volume error between +5% and +10% and between -5% and -10% indicate a model with 

reasonable performance. For a good model fit the value of R should have positive value and be as 

close to unity as possible. 
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4 Results and discussion 

 

4.1 Selection of the catchments  

After the preliminary selection of 30 catchments, it was realised based on the calibration that only 

17 were suitable for the following steps. The remaining catchments were left for poor calibration 

results.  Since the rainfall data used was CHIRPS estimates, the focus was given to the coefficient 

of determination r and visual observation. Some analysis was done prior to the calibration by 

visualising the plotting of hydrographs, calculating annual average rainfall, potential 

evapotranspiration and runoff, Evaporation ratio and runoff coefficient that was compared to the 

long term average values using the FAO’s Local Climate Estimator (New_LocClim_1.10) dataset 

using the centroid of the corresponding catchment for location. The Nash-Sutcliffe model 

efficiency coefficient (NSE) has been calculated directly but was not strictly considered because 

of the rainfall uncertainties. Figure 1 shows the comparison between the calculated and estimates 

from New Loc Clim of catchments’ runoff ratio and aridity index. This is to show that the type 

climate of each cathment. Some runoff coefficients and aridity index calculated from the data did 

not agree with the ones from the New Loc Clim dataset. This may be due to error in the 

measurement of the streamflow or from CHIRPS estimates. Missing data can also have impact on 

the averaged values depending on the period of flows when the data has not been recorded. Missing 

low flows will increase the average whereas missing high flows will reduce the average value. As 

New_LocClim is a regional dataset based on extrapolations and estimations, there should be some 

discrepancies as compared to the field estimates.  
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Figure6: Comparison of calculated runoff ration and estimates from New Loc Clim 

 

 

Figure 7: Comparison of calculated aridity index and estimates from New Loc Clim 
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4.2 Derivation of model parameters (MPs)  

The models parameter which are the dynamic response descriptors of the catchments were obtained 

through calibration. The periods of calibration and validation has been selected according to the 

availability of data and concurrency with climatic data. The objective functions for calibration and 

validation and the periods have been compiled in table 2. The resulting MPs for each catchment 

after calibration are in Table 3. Figure 8 and Figure 9 show the observed and simulated streamflow 

over the calibration and validation periods respectively for Amala river (1LA03). 

 

Table 2: Calibration and verification periods and performance measures 

ID Cal Start Cal Wup Cal End Val Start Val Wup Val End Cal R2 Val R2 Cal NSE Val NSE 

1HA04 23/9/1981 12/12/1982 28/08/1983 7/7/ 1986 27/09/1986 23/12/1987 0.70 0.49 0.28 0.14 

1LA03 5/3/ 2001 25/05/2001 5/11/ 2008 6/21/ 2012 21/06/2012 8/24/ 2016 0.71 0.62 0.41 0.37 

1LB02 12/11/1984 3/30/ 1985 7/13/ 1989 8/25/ 2009 11/14/2010 9/30/ 2017 0.66 0.56 -0.30 0.19 

2ED01 7/27/ 1989 10/5/ 1990 6/20/ 1994 2/8/ 1993 12/16/1993 8/24/ 1997 0.58 0.77 0.09 0.39 

3BB12 3/8/ 2007 6/16/ 2007 12/3/ 2011 9/29/ 2011 2/21/ 2013 5/8/ 2016 0.56 0.37 0.17 0.00 

3CB02 3/25/ 1985 3/25/ 1985 9/15/ 1987 8/6/ 1989 6/8/ 1989 10/16/1993 0.62 0.55 0.18 0.02 

3CB13 9/19/ 1984 1/23/ 1986 10/6/ 1988 11/11/1987 10/25/1988 7/17/ 1990 0.55 0.50 0.19 0.12 

4AA02 2/27/ 1982 2/27/ 1982 11/16/1985 8/19/ 1988 8/19/ 1988 10/27/1992 0.54 0.52 -0.34 -1.15 

4BC04 3/25/ 2001 11/13/2002 5/18/ 2005 8/17/ 2017 2/4/ 2011 9/25/ 2014 0.59 0.53 -2.43 -0.13 

4CB05 10/18/1989 4/16/ 1990 8/28/ 1993 12/26/1999 8/6/ 2000 1/31/ 2005 0.64 0.51 -1.99 0.22 

4DC03 7/1/ 1984 8/19/ 1984 7/17/ 1990 7/24/ 1996 7/18/ 1992 4/10/ 1996 0.56 0.72 -0.49 0.26 

4EB01 19/1/ 1994 6/11/ 1994 8/19/ 1997 12/30/1999 7/13/ 2000 4/10/ 2003 0.50 0.51 0.11 0.16 

5AA5 1/8/ 2005 10/27/2005 1/28/ 2010 2/20/ 2010 9/5/ 2010 12/25/2013 0.83 0.75 -1.07 -1.12 

5BE07 2/2/2002 9/20/2002 4/3/2007 4/17/2009 9/6/2010 8/31/2018 0.55 0.55 -0.78 -1.59 

1BA01 6/1/2010 1/6/2010 12/13/2011 5/13/2013 13/5/2013 6/1/2016 0.80 0.63 0.51 0.22 

4BE01 7/1/1983 7/5/1983 12/31/1987 1/24/1988 1/27/1988 1/17/1997 0.72 0.72 0.46 0.48 

1CB08 2/3/1989 4/14/1990 1/28/1999 2/11/1999 1/18/2000 8/31/2015 0.65 0.60 -0.20 -0.20 

 

Cal : Calibration, Val: Validation, Wup: Warm up,  
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Table 3: optimal AWBM model parameters for selected catchments 

ID BFI C1 C2 C3 Ce Kbase Ksurf 

1HA04 0.45 0.0 16.8 33.5 21.77 0.983 0.88 

1LA03 0.65 6.2 63.4 126.8 83.18 0.976 0.68 

1LB02 0.65 9.8 181.2 246.9 186.68 0.980 0.84 

2ED01 0.65 7.3 335.5 442.3 337.76 0.980 0.70 

3BB12 0.36 19.2 195.8 382.4 252.93 0.985 0.68 

3CB02 0.65 3.3 51.7 94.3 63.66 0.989 0.74 

3CB13 0.65 1.3 9.1 27.4 15.97 0.981 0.75 

4AA02 0.52 9.0 142.3 348.6 213.76 0.980 0.75 

4BC04 0.65 15.0 153.6 307.1 201.49 0.985 0.65 

4CB05 0.65 2.8 120.3 139.9 113.04 0.986 0.88 

4DC03 0.65 2.9 103.0 142.0 106.47 0.988 0.78 

4EB01 0.63 1.6 16.4 32.7 21.47 0.985 0.68 

5AA5 0.50 13.2 134.8 269.6 176.87 0.975 0.77 

5BE07 0.58 26.9 238.4 549.9 344.93 0.983 0.84 

1BA01 0.65 8.5 247.0 548.7 345.67 0.981 0.73 

4BE01 0.56 4.1 13.6 156.0 7.73 0.985 0.77 

1CB08 0.56 4.0 205.8 429.9 275.79 0.9710 0.75 

C1= Capacity of smallest store, C2 = Capacity of middle store, C3 = Capacity of largest store  

Ce = Average surface store  
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Figure 8: Observed and simulated flow over the calibration period for 1LA03 

 

 

 

Figure 9: Observed and simulated flow over the verification period for 1LA03 
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4.3 Catchment attributes (CAs) 

The hydrologically relevant geomorphometry, soil, land use/cover characteristics of the selected 

catchments easily accessible was used to characterize each catchment. Those characteristics 

include (Land use/cover) shrub cover, tree cover, built up areas and crop land, (Soil) hydraulic 

conductivity, Available water capacity, carbon content, percent sand, percent clay, (Topography) 

average slope, surface area, drainage density, minimum, maximum and average elevation.  

 

4.3.1 Topographic characteristics 

Topographic attributes taken into account for this study included average slope, surface area, 

drainage density, minimum, maximum and average elevation. The values for each attribute for 

each catchment are recorded in the table 4. In table it can be seen from the univariate statistics that 

the area, the drainage density and the maximum altitude present each a skew ranging from highly 

significant to moderately significant. For the other topographic based CAs the skew is not 

significant (table 7). 

 

4.3.2 Land use/cover based catchment attributes 

For the land use land cover characteristics, the percentage area of tree cover, shrubs cover, 

grassland and Built up area was considered. The univariate statistics showed that the built up area, 

grassland and shrub land were highly skewed, this can be explained by the fact that this types of 

land use indices are induced by human invasion of the forest. However the slight skew of the 

cropland shows a consistent conversion of the forest into agricultural land. It is normal to have an 

insignificant skew for the tree cover areas since majority of land cover is the forest. The values for 

land use/cover for each catchments are recorded in the table 5. 
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Table 4: Topography-based catchment attributes 

ID Area 

(Km2) 

AVERAGE_Elv(m) Min_Elv(m) Max_Elv 

(m) 

D_D(m/Km2) SLOPE (%) 

1HA04 123.95 1718.19 1209 2014 529.98 19.52 

1LA03 694.95 2363.72 1898 2972 811.89 19.41 

1LB02 698.11 2448.26 1847 3067 838.25 19.22 

2ED01 135.17 2489.70 2103 2782 567.38 21.67 

3BB12 237.46 1793.63 1493 2424 581.22 14.74 

3CB02 93.22 2050.47 1606 2626 1071.41 21.74 

3CB13 44.63 2080.30 1642 2626 1222.63 21.38 

4AA02 139.80 2439.67 1755 4302 938.95 17.35 

4BC04 421.54 1784.20 1144 3205 789.41 17.04 

4CB05 38.45 2574.76 2021 3512 847.82 24.54 

4DC03 215.36 2271.24 1299 4942 939.97 20.75 

4EB01 122.67 2973.46 1308 4942 759.31 31.26 

5AA5 147.04 2497.64 2331 2853 643.13 12.87 

5BE07 174.43 2791.86 1931 5051 775.82 25.96 

1BA01 254.93 2618.28 2031 3255 30.50 22.02 

4BE01 419.08 1905.58 1211 3767 749.21 23.71 

1CB08 195.54 2493.90 2204 2764 691.09 11.60 

 

AVERAGE_Elv(m) = Average elevation Max_Elv (m) = Maximum elevation, Min_Elv(m) =Minimum elevation, 

D_D = Drainage density, SLOPE = Average slope 
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Table 5: Land use/cover based catchment attributes (Percentage areal coverage of dominant 

classes) 

ID Built Up Areas Cropland Grassland Shrub Areas Tree Areas 

1HA04 0.00% 91.00% 1.00% 0.00% 7.17% 

1LA03 0.08% 54.84% 0.84% 0.55% 43.66% 

1LB02 0.02% 60.07% 1.90% 0.80% 37.20% 

2ED01 39.12% 6.67% 0.00% 0.32% 53.46% 

3BB12 11.04% 72.87% 6.31% 3.00% 6.00% 

3CB02 0.76% 57.47% 8.20% 0.00% 33.33% 

3CB13 1.94% 49.76% 8.10% 0.70% 39.48% 

4AA02 0.24% 33.04% 5.97% 2.65% 57.92% 

4BC04 1.25% 62.66% 6.79% 1.00% 28.30% 

4CB05 0.06% 14.00% 3.53% 1.28% 81.00% 

4DC03 0.14% 0.14% 71.39% 0.91% 20.17% 

4EB01 0.00% 6.68% 21.56% 4.00% 67.00% 

5AA5 1.46% 75.89% 7.49% 0.16% 14.77% 

5BE07 0.34% 16.97% 8.62% 7.28% 66.39% 

1BA01 0.01% 42.99% 8.68% 1.20% 46.77% 

4BE01 0.95% 71.99% 9.12% 1.40% 16.46% 

1CB08 0.05% 63.58% 6.63% 0.17% 29.49% 

 

4.3.3 Soil characteristics based catchment attributes 

The soil attributes considered comprised the areal weighted average hydraulic conductivity (k in 

mm/h), available water capacity (AWC in mm water/mm soil), total organic carbon (TOC in %soil 

weight) the Sand percentage and Clay percentage.  The soil classes from the Harmonized World 

Soil Database (HWSD) has been used but for lack of representation over the catchments of the 
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study, only the nitisols (NT) well represented across the catchment has been kept. The soils 

hydraulic conductivity and AWC has been computed from the attributes of the soil classes 

identified in the catchment using the SPAW software (Soil, Plant, Air, Water , a tool developed by 

U.S. Department of Agriculture). Only AWC and Clay percentage were slightly skewed. The other 

parameters a moderately to highly skewed (table 7). This reflects well the sparse distribution of the 

catchments over the study area and the high diversity of the soils. The soil characteristics based-

CAs for each catchment are recorded in Table 6 below.  

 

Table 6: Soil characteristics based catchment attributes 

ID K(mm/h) AWC TOC %Sand %Clay NT 

1HA04 6.85 10.36 3.03 45.30 32.89 0.00 

1LA03 49.98 22.72 4.26 32.91 22.17 0.05 

1LB02 45.07 23.13 3.94 33.44 21.61 0.00 

2ED01 4.20 12.06 1.71 21.88 43.58 0.99 

3BB12 1.18 9.55 1.41 19.43 67.68 0.82 

3CB02 6.68 11.86 2.90 28.14 45.05 0.94 

3CB13 3.07 12.32 3.52 26.38 54.23 0.76 

4AA02 4.69 11.35 2.03 24.83 42.84 0.52 

4BC04 3.58 10.78 2.15 25.43 54.98 0.93 

4CB05 15.24 12.00 1.90 32.00 22.00 1.00 

4DC03 7.59 15.36 3.33 24.54 33.13 0.84 

4EB01 7.48 21.35 4.63 18.36 16.97 0.59 

5AA5 0.99 9.66 1.33 16.61 62.23 0.84 

5BE07 1.05 16.08 4.17 20.02 40.45 0.31 

1BA01 28.77 13.79 4.38 47.20 27.70 0.22 

4BE01 4.59 11.35 2.46 25.91 52.47 0.99 

1CB08 3.28 12.14 1.72 21.43 42.71 0.71 

https://www.nrcs.usda.gov/wps/portal/nrcs/detailfull/national/water/manage/drainage/?cid=stelprdb1045331
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K: Areal averaged soil hydraulic conductivity, AWC: Areal averaged soil available water content, TOC: 

Areal averaged soil total organic carbon, %Sand: Areal averaged soil sand percentage, %Clay: Areal 

averaged soil clay percentage, NT: Pencentage areal coverage of Nitisol 

 

Table 7: Descriptive statistics of catchment attributes 

CAs N Mean Sd Se Min Max Skew 

Area (Km2) 17 244.49 200.92 48.73 38.45 698.11 1.22 

AVERAGE_Elv(m) 17 2311.46 367.09 89.03 1718.19 2973.46 -0.14 

Min_Elv(m) 17 1707.82 379.32 92.00 1144.00 2331.00 -0.06 

Max_Elv(m) 17 3359.06 932.88 226.26 2014.00 5051.00 0.65 

D_D(m/Km) 17 752.23 257.96 62.56 30.50 1222.63 -0.85 

SLOPE (%) 17 20.28 4.83 1.17 11.60 31.26 0.18 

Built Up Areas 17 0.03 0.10 0.02 0.00 0.39 3.06 

Cropland 17 0.46 0.28 0.07 0.00 0.91 -0.28 

Grassland 17 0.10 0.16 0.04 0.00 0.71 2.96 

Shrubs Cover Areas 17 0.01 0.02 0.00 0.00 0.07 1.81 

Tree Cover Areas 17 0.38 0.22 0.05 0.06 0.81 0.24 

K(mm/h) 17 11.43 15.15 3.67 0.99 49.98 1.60 

AWC 17 13.87 4.43 1.07 9.55 23.13 1.10 

TOC 17 2.87 1.13 0.27 1.33 4.63 0.14 

%Sand 17 27.28 8.68 2.10 16.61 47.20 1.00 

%Clay 17 40.16 15.12 3.67 16.97 67.68 0.11 

NT 17 0.62 0.37 0.09 0.00 1.00 -0.60 

Sd = standard deviation, Se = standard error, N = number of catchments, max = maximum, 

 min = minimum 
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4.4 Derivation of a Regional Model Parameter Set 

4.4.1 Development of MPs and CAs relationships 

Pearson’s correlation coefficient (r) between MPs and CAs, between the CAs themselves and 

between MPs themselves are calculated. The purpose of this first step is not to derive functional 

relationships, but instead to evaluate the correlations. The awareness of the correlation between 

catchment parameters is key to avoiding multicollinearty. That is when two or more predictors in 

a regression are highly related to one another in a way that they do not provide unique and/or 

independent explanation to the regression. It is source of errors in the estimation of the dependent 

variable and difficulty in the interpretation of the regression equation. When model parameters are 

highly correlated it potentially results in parameter-identifiability problems and poor performance 

in regionalization studies. The independence between the MPs is a good information about the 

suitability of AWBM for the study (Kokkonen et al., 2003; Xue et al., 2017).  The correlation 

matrix highlighted the advancement of the agricultural land in the expense of the forest, 

materialised by the high negative Pearson correlation coefficient (-0.73) between both variable. 

The catchment at high elevation are covered by forest while those invaded for crop production lie 

at lower elevation (0.74 and -0.66 between average altitude and tree cover and average altitude and 

cropland respectively). It is also of interest to mention the correlation between the soil parameters 

among themselves and the areal coverage percentage of nitisols. The correlation between CAs and 

MPs showed that the BFI is high when the percentage of clay is low and reduces when forest is 

converted into agricultural land. This can be explained by the increase of infiltration rate in forest 

covered areas and low clay content soil. Also higher the AWC and TOC of a soil, the higher is the 

BFI. There seemed to appear some expected correlations (BFI with average elevation, slope and k) 

which could also agree the hydrological understanding. The baseflow recession constant correlated 

significantly in the positive direction with the slope and in the opposite direction the minimum 

elevation. These correlations appeared difficult to explain and can even be discussed. Elevation has 

a strong influence on the inter-relationship between climate soil and forest, but a correlation with 

only minimum elevation is not obvious. Also the slope can influence as an accelerator, steeper 

slopes should then result in smaller recession constants. The surface store reduces when the 

drainage density is increases and varies in the same direction as the minimum elevation. Again it 

is non-trivial to explain the role of the minimal elevation, but the quick accumulation and routing 

of water in high drainage density catchment can explain the relationship with the surface store. 
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This parameter act as a buffer to the error in the input data and one should be careful to draw 

definitive conclusion. If some of these relationship can explain physical processes, other seems to 

be merely statistical coincidences and, other are can be discussed to be hydrologically wrong or 

too complex to explain. The surface recession constant however did not show any significant 

correlation with any CAs. This is not uncommon in regionalisation studies.  Seibert (1999)  for 

example, chose three catchment characteristics (catchment area, forest and lake percentages) of 11 

Swedish catchments to relate to HBV model parameters. Out of 13 model parameters relationships 

were found only for 6 , whereas the physical interpretation of some of these relationships only 

weakly relate to the physical basis of the hydrologic model. Reasons behind this situation can be 

diverse. The surface runoff is highly dependent on the shape factor and the slope and is very 

sensitive to land use change(L. S. Pereira & Keller, 1982). The shape factor was not included as 

CA and due to the availability and consistency of data concurrently for all the selected catchments, 

assumption was made that changes in land use/cover did not alter significantly, which is highly 

questionable. The interflow is an important process in high elevation, and the AWBM is 

constructed to interpret it as either a baseflow or attenuation of surface runoff (Boughton, 2017).  
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Table 8: Correlation matrix between Model Parameters and Catchment attributes 

 BFI CE Kbase Ksurf 

Built Up Areas 0.00 0.41 -0.06 -0.30 

Cropland -0.53 -0.20 -0.28 0.01 

Grassland 0.19 -0.18 0.39 -0.01 

Shrubs Cover Areas -0.16 0.29 0.23 0.05 

Tree Cover Areas 0.54 0.19 0.04 0.11 

NT 0.05 -0.07 0.31 -0.27 

K(mm/h) 0.40 -0.03 -0.23 0.05 

AWC 0.48 -0.12 -0.10 -0.03 

TOC 0.48 -0.19 0.15 0.05 

%Sand 0.16 -0.10 0.07 0.35 

%Clay -0.53 0.15 -0.04 -0.30 

Area (Km2) 0.18 0.01 -0.22 -0.17 

AVERAGE Elv(m) 0.39 0.34 -0.29 0.09 

Min_Elv(m) 0.10 0.57 -0.68 0.14 

Max_Elv(m) 0.28 0.05 0.30 0.05 

D_D(m/Km) 0.25 -0.53 0.22 0.07 

SLOPE (%) 0.46 -0.30 0.56 0.13 

Bold: significant at 0.05 P-level values 

 

 

 



55 

 

Table 9: Correlation matrix between MPs and CAs 

 Built Up 

Areas 

Crop land Grasslan

d 

Shrubs 

Cover 

Areas 

Tree Cover 

Areas 

NT K(mm/h) AWC TOC %Sand %Clay Area 

(Km2) 

AVERAGE_

Elv (m) 

D_D 

(m/Km) 

SLOPE 

(%) 

Built Up Areas % 1               

Cropland % -0.26 1              

Grassland% -0.18 -0.47 1             

Shrubs Cover Areas -0.11 -0.40 0.06 1            

Tree Cover Areas % 0.05 -0.73 ** -0.14 0.44 1           

NT 0.32 -0.20 0.21 -0.13 -0.03 1          

K(mm/h) -0.19 0.04 -0.16 -0.21 0.17 -0.65 ** 1         

AWC -0.19 -0.31 0.12 0.21 0.37 -0.57* 0.74 ** 1        

TOC -0.36 -0.26 0.19 0.31 0.32 -0.64 ** 0.53* 0.76 ** 1       

%Sand -0.24 0.25 -0.19 -0.35 -0.03 -0.58 * 0.54* 0.09 0.38 1      

%Clay 0.22 0.44 -0.12 -0.05 -0.56 0.53* -0.64** -0.73 ** -0.66** -0.47 1     

Area (Km2) -0.15 0.29 -0.12 -0.12 -0.19 -0.46 0.75 ** 0.59* 0.30 0.20 -0.22 1    

AVERAGE_Elv(m) 0.00 -0.66 ** 0.07 0.42 0.74** -0.16 0.20 0.50* 0.36 -0.20 -0.54 * -0.12 1   

D_D (m/Km) -0.20 -0.14 0.19 -0.00 0.11 0.29 -0.14 0.11 -0.01 -0.40 0.09 -0.07 -0.13 1  

SLOPE (%) -0.01 -0.60 * 0.16 0.47 0.60* -0.04 0.06 0.42 0.63 ** 0.09 -0.54 * -0.15 0.39 0.09 1 

Min_Elv (m) 0.22 -0.11 -0.35 -0.08 0.35 -0.07 0.21 0.03 -0.18 -0.09 -0.06 -0.08 0.58* -0.22 -0.30 

Max_Elv (m) -0.24 -0.71 ** 0.58* 0.68** 0.50* 0.04 -0.11 0.37 0.39 -0.34 -0.34 -0.06 0.57* 0.17 0.56* 

 *Significant at 0.05 level ** Significant at 0.01 level
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4.4.2 Multiples linear models 

The forward entry method and the backward removal method are applied. The models was 

established for three out of the four AWBM parameters used. The linear models were established 

for three AWBM out of four. There was no significant correlation between individual CAs and 

combinations with the surface recession constant (Ksurf). The optimal models for base flow 

parameters and surface store are the following: 

 

Table 10: Linear models 

 

The highest multiple linear correlation coefficient a
R

2, was obtained for the average surface store, 

followed by the baseflow index and the baseflow recession constant and; the values are 0.71, 0.7 

and 0.69 respectively (table 9). The baseflow recession constant has the highest difference between 

the multiple linear correlation coefficient aR
2 and the adjusted multiple linear correlation coefficient 

a
R

2
adj (0.1), followed by the base flow index constant and the average surface store (0.09 and 0.05 

respectively). This means that the problem of overfitting is minor. The logarithm of the average 

surface store CE was used to reduce the skew and allow for possible non-linear relationships. But 

the result was not better. The equation suggest that the steeper is the slope, the least is the store. 

This can be explained by the favouring factor slope has for the runoff in the expense of the 

infiltration and storage into the soil. The built up area percentage is thought to increase the 

impervious areas and reduce the soil storage and infiltration capacity (Klungniam, 2016). This 

equation implying that an increase of the average surface storage correlate positively with the built 

up area increases cannot be explained using widely accepted hydrological knowledge.  The term 

of shrub in the equation, concur with the property of this vegetation type in increasing infiltration 

rate. The baseflow index model suggests that it increases when the sand proportion increases. This 

can be justified by the high infiltration rates of soils when the sand percentage increases. The 

nitisols correlated significantly with soil parameters (K, AWC, TOC, %SAND and % CLAY) 

showing a good definition of its characteristics by them. If its inclusion in the baseflow index model 

might be seen as a violation of statistical theories, the variance inflation factor remained low, in 

Linear Models a
R

2 a
R

2
adj 

BFI= 2.093*10-02 * %SAND + 2.391*10-04 * Average Elv + 0.2313 * NT 0.71 0.62 

Kbase = 0.9879 - 8.221*10-6 * AVERAGE Elv + 6.009*10-04 * SLOPE + 9.574*10-03 * Grassland 0.70 0.61 

CE= 359.720 + 4175.159* Shrubs + 656.763* Built - 13.958* SLOPE  0.80 0.74 
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addition, the coefficient of determination and the significance has increased. The inconvenience of 

using percentage of catchment area under Nitisols as a descriptive is that the accuracy of calculation 

on catchments where they are poorly or not represented will be undermined. There was a 

coincidence that catchments that met the criteria to be selected for further steps of the study have 

Nitisols as the main soil type. This shows the possibility that other features of soils (e.g.: Infiltration 

rate, their origin) or a combination of some of the attributes could better explain the BFI. Other soil 

types were tested but the low representation disapprove their use in the linear regression even 

though they showed some correlation. Defining the soils characteristic on the basis of hydrological 

class could improve the results and the confidence in the applicability in an extended area. The 

regional model for BFI claims an increase of the baseflow index with the average altitude. This can 

be explained by the fact that higher altitude areas have these deep and well drained soils like 

Nitisols and Andosols and also tend to be covered by forest and not agriculture, which may 

influence BFI. Singh (1968) investigates the factor affecting the baseflow; some of his findings 

were that the baseflow is affected by the amount of precipitation and the evapotranspiration which 

depends on soil properties and vegetation type and density. His results are concordant Gibbs et 

al.,(2008) who found high correlations between baseflow parameters of AWBM and annual 

pecipitation, PET, average elevation and slope. But the use of general regression neural network in 

their study does not alow to undrestand how they relate.  Same reasoning can be used for the 

baseflow recession constant which also significantly included the average elevation with high 

significance (0.001 p-value level) into the model, but the other part of the model of Kbase does not 

make sense hydrologically. In general the slop has a quickening effect on flows.  For this reason 

higher slopes should have a decreasing effect on the baseflow recession constant as high amount 

of water are released in shorter time from the groundwater reservoir.  

 

4.4.3 Validation of MPs -CAs Relationships 

The MPs were estimated using the linear models established. The parameter values were estimated 

not only for the catchments used in the statistical model development (Training data) but also for 

the ones left for testing (Validation data). The model predict relatively well the parameter values 

for catchment used for their establishment (training catchments) but predict poorly for testing or 

validation catchments. This can be explained by the particularity of those catchments. Three 

(1BA01, 1CB08, 1HA04,) of them are located far from most of the training catchments and the 
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other (4CB05) has the smallest size (38Km2). Despite the difficulty to explain the baseflow 

recession constant model, it gives acceptable values unlike the baseflow index which give for three 

catchments values out of the range of values obtained through calibration and the surface storage. 

The estimated BFI for 1BA01 was even nonsensical since BFI should be less than one.  The 

prediction performance was measured by calculating the correlation coefficient R2 and the NSE for 

both training and validation for each model (Table 11). Overall the Kbase model performed the 

best with r2 values for training (R2
T) and validation (R2

V) of 0.71 and 0.7 respectively NSE values 

for training (NSET) and for validation (NSEV) of 0.30 and 0.32 respectively. Contrary, CE and BFI 

did not perform well. For BFI, R2
T and R2

V values of 0.71 and 0.42 respectively and NSET and 

NSEV values were 0.28 and 10.95 respectively.  The CE did not show better results; R2
T and R2

V 

values were 0.81 and 0.26 respectively and NSET and NSEV values were 0.19 and 1.29. This is 

depicted well on the graph (figure 10-15)  

 

 

 

Figure 10: Calibrated and estimated values of surface storage (CE) 
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Figure 11: correlation between estimated and calibrated value of the surface storage for training 

and validation 

 

 

 

 

Figure 12: Calibrated and estimated values of baseflow index   (BFI) 
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Figure 13: correlation between estimated and calibrated value of BFI for training and validation 

 

 

 
 

Figure 14: Calibrated and estimated values of baseflow recession constant (BFI). 
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Figure 15: correlation between estimated and calibrated value of Kbase for training and 

validation 

 

Table 11: Performance measures value of the linear models 

 NSET NSEV R2
T R2

V 

CE 0.19 1.29 0.81 0.26 

BFI 0.28 10.95 0.71 0.42 

KBASE 0.29 0.24 0.7 0.7 

 

4.5 Estimation of Daily Stream Flows 

The estimated parameters were used to estimate daily streamflow for the pseudo-ungauged 

catchments. Since the surface recession constant could not be estimated, the calibrated has been 

used for simulation. The average surface store has been disaggregated to get the partial store using 

the pattern in (Boughton, 2004). This did not give the same proportion of the average store as the 

calibrated value since the value obtained through the calibration method developed on the basis of 

the model structure and the pattern found by Boughton (2004).  Attempt to improve the pattern did 

not give better results. The surface storage and the base flow parameters estimated using the 

regional model and the default value of surface recession constant obtained through by averaging 

the calibrated value (table 12) were used for simulations over the calibration and validation periods. 
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The extreme values of the calibrated parameters were used as default values for the estimated 

parameters that were found to be out of the range. The maximum value where used for values 

exceeding it. This was applied particularly to the BFI.  

 

Table 12: Estimated model parameter values 

ID C1 C2 C3 BFI KBASE KSURF 

1HA04 5.44 55.31 110.61 0.74* 0.983 0.88 

4CB05 4.23 43.00 85.99 0.89* 0.986 0.88 

1BA01 6.59 66.96 133.92 1.04* 0.981 0.73 

1CB08 14.28 145.08 290.16 0.59 0.971 0.75 

Default 7.95 131.1 251.65 0.59 0.982 0.76 

*Values out of the range of calibrated values 

 

Table 13: performance measures for estimated and calibrated model parameter values 

ID C1 C2 C3 BFI Kbase Ksurf R2 cal R2 val NSE cal NSE val 

1HA04* 5.44 55.31 110.61 0.65** 0.983 0.76** 0.70 0.41 0.33 0.08 

1HA04 0.00 16.8 33.5 0.45 0.983 0.88 0.70 0.49 0.28 0.14 

4CB05* 4.23 43.00 85.99 0.65** 0.986 0.76** 0.63 0.54 0.30 0.20 

4CB05 2.8 120.3 139.9 0.65 0.986 0.88 0.64 0.51 -1.99 0.24 

1BA01* 6.59 66.96 133.92 0.65** 0.981 0.76** 0.70 0.63 -0.01 -0.85 

1BA01 8.5 247 548.7 0.56 0.981 0.73 0.80 0.63 0.51 0.21 

1CB08* 14.28 145.08 290.16 0.59 0.971 0.76** 0.64 0.62 -0.43 -0.09 

1CB08 4 205.8 429.9 0.56 0.971 0.75 0.65 0.60 -0.2 -0.20 

* IDs for Estimated parameter values, ** Default values.  
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Figure 16: Observed and simulated streamflow using estimated and calibrated parameters for 

1AB01 over the calibration period 

 

 

 
 

Figure 17: Observed and simulated streamflow using estimated and calibrated parameters for 

1AB01 over the validation period 
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Figure 18: Observed and simulated streamflow using estimated and calibrated parameters for 

1CB08 over the calibration period 

 

 
 

Figure 19: Observed and simulated streamflow using estimated and calibrated parameters over 

the validation period 
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Comparing both parameter sets, estimated and calibrated for each catchments, showed not greater 

difference. The average values for R2 is 0.67 for estimated parameters and 0.7 for calibrated. This 

relatively good performance for the estimated values is due to the use of the calibrated values of 

the surface recession constant and the default value of the baseflow index for some catchments. 

Those parameters are very important for depicting daily flow pattern ( Boughton & Chiew, 2007), 

this explain such close performances. The only parameter successfully estimated was the baseflow 

recession constant Kbase, no default value was applied. The value 0.71 estimated for  1CB08 was 

used despite being below the minimal calibrated value because of the little extrapolation from the 

minimum. There is worth to mention that for that catchment the BFI estimated was also acceptable. 

The determination coefficient, R2, for estimated and calibrated parameters for that catchment are 

very close, 0.64 and 0.65 for calibration period and 0.62 and 0.6 for verification period respectively. 

This is positive, considering the isolated location of that catchment from others.  The Nash-Sutcliffe 

coefficient of efficiency indicate very poor results. This reflected well the fact that the data was not 

bias-corrected. The bias correction of CHIRPS rainfall estimates, potential evapotranspiration 

estimates and streamflow data was not in the scope of the study but has proven to be crucial. 

Considering the model structure, the surface store behaves like a buffer towards errors in the input 

data. It is found that errors of ±20% in the estimation of areal rainfall potentially cause errors of 

+98% to -58% in the calibrated value of the average surface storage capacity of the AWBM ( 

Boughton, 2010, p. 74). The surface store is highly sensitive to the input data uncertainties. 

Overestimated rainfall would increase the surface store in order to match the observed streamflow 

and the same way reduce the store when underestimated. Streamflow data errors and evaporation 

data errors at a less important magnitude could have the same effects on the surface store capacity 

but in the opposite direction. The constructor proposed scaling down or up the rainfall, evaporation 

or runoff data by a factor but stressed that this could be sensible to apply when the purpose of 

modelling is for practical application or extending streamflow record but useless and even worse 

if the parameters values of calibration are to be transferred for use on ungauged catchments with 

different rainfall data (Boughton, 1996). Haque et al., (2015) conducted a quantitative assesment 

of uncertainties of AWBM model, in both gauged and ungauged catchments. The main results of 

this study was that modeling output of AWBM model could vary from -1.3 to 70% due to different 

rainfall input data. In the same line, it was found by Jones et al., (2006) that AWBM model showed 

a mean sensitivity of 2.5% change  in mean annual flow (the highest in comparison to SIMHYD 
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and Zhangh01; 2.4 and 2.1% respectively) for every 1% change in mean annual rainfall and a mean 

sentivity of -0.8% change  in mean annual flow  for every 1% change in mean annual 

evapotranspiration. 22 catchments from Australia, covering a range of climates, from cool 

temperate to tropical and humid to arid were used in that study (Jones et al., 2006). Considering 

the use of CHIRPS estimates and Penman-Monteith potential evaporation it makes it 

understandable the poor results during the calibration process, the drastic reduction of the number 

of catchments and the poor confidence in the use of the regionalised model. Dinku et al., (2018)  

conducted a study on the validation of CHIRPS rainfall estimates over eastern Africa. They tested 

the performance in terms of detection of occurrence of rainfall and accuracy in terms of rainfall 

quantity. The CHIRPS skill in detecting rainfall occurrence at dailly steps has not been tested over 

kenya for lack of rainfall data but was poor in Tanzania. This result can be pressumed worst Kenya 

since, since the perferance measures measured in both contries showed worst result over Kenya. It 

was highlited a low skill of determination over montainous and costal areas. The area of this study 

is essentially the montainous part ot Kenya. Another relavent finding from (Dinku et al., 2018) is 

the overestimation of rainfall amounts with a bias of 1.13 for pixel-to-pixel statistic and 1.10 for 

point-to-pixel statistics over the country with an emphasis on the western part where high rainfall 

coverage are particarly overestimated. Most of the catchments selected in that regions, arround the 

Mt Elgon, was been left after preliminary analysis. The inconsistencies in term of rainy days and 

rainfall amount in comparison with the rain gauges is the main challenge in the use of satellites 

data for hydrologicall modeling. The potential evapotranspiration data have been scaled down 

purposely, so to compensate for the overestimation, but the bias appears to be inconsitent.  Some 

irregularities in the dataset obtained from the national authorities in charge of Water Resources 

Authority (WRA) has also brought some challenges and may have undermined the results. That is 

the inaccuracy of the river gauging stations location coordinatesm used as river outlets. When the 

station lies near the conection points with tributaries, making decision on where exactely on the 

river it is installed is crucial as selecting it  upstream or downstream of the connection point can 

increase or reduce the catchment area. This affects also surface store value during calibration and 

the estimation of catchments attributes. The worst senario is when the gauging station on a river is 

given coordinates placing it on another river. One could be found using a complete dataset of 

rainfall and  evaporation from a location to be calibrated with the streamflow of a river from another 

location.  
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Some studies resulted in regional models that were not satisfactory and some results could 

necessarily. Deckers et al., (2010) numbered some studies that were not successful. This included 

the works by Young (2006) who used the Probability Distributed Model (PDM) toolkit (Moore 

1985, 1999) and Wagener and Wheater (2006) using the Rainfall Runoff Modelling Toolbox 

(RRMT; Wagener et al. 2002) in the UK showed that regionalisation was not successful in all cases 

(Deckers et al., 2010). This makes the investigators eligible to give useful recommendations.  
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5 Conclusion and recommendation 

5.1 Summary 

In this study, 17 catchments selected in the humid areas of Kenya, essentially located in the 

mountainous areas of Kenya, was calibrated in other to derive a regional model for calibration of 

ungauged catchments in the area. CHIRPS rainfall estimates and wind speed, potential 

evapotranspiration estimated from minimum and maximum temperatures, relative humidity and 

solar radiation from NASA POWER in the INSTAT software were used as input data. The 

catchments attributes were defined based on the topography, land use/cover and soil characteristics 

using readily available information. Multiple regressions were used to develop functional 

relationships between defined catchments descriptive attributes and the model parameters obtained 

from calibration.  

The calibration results were poor in general; over around forty catchment only seventeen were 

selected for further analysis only on the basis of the correlation coefficient of determination R>0.5. 

This criterion was established based on the data-scarcity context of the study. More rigorous 

selection criteria, like in  (Deckers et al., 2010) where the authors set the threshold of Nash–

Sutcliffe coefficient, NSE>0.75 and the relative volume error, |RVE|<5%, would have resulted in 

no catchments being eligible for the study. This makes the context of data quality and availability 

a crucial in making trade-offs between the worthiness and unworthiness of a study. The regression 

equation was established for only three out the four parameters of AWBM targeted. The average 

surface storage capacity, the BFI, Kbase and Ksurf. The partial surface storage was aggregated to 

ease the work.  

The model for the surface storage was established. The performance measures showed relatively 

good estimation accuracy on training data, with R2
T and NSET values of 0.81 and 0.19 respectively.  

However, errors in the estimations were considerable, for validation catchments. Especially for 

1BA01, the estimated value was 78% smaller than the calibrated value. The NSEV and R2
V for the 

validation catchment were 1.29 and 0.26 respectively, which is very poor in terms of prediction 

accuracy.  The fact that the surface storage is greatly influenced by the errors in the input dataset 

could be part of the reasons. Same observation can be made on the regional model for the BFI 

estimations which showed also very poor accuracy with most values for validation catchment out 

of the range of the calibrated values.  Only one estimate (1CB08) over the four estimations was 
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within the range of calibrated values. The worst estimation was found for 1AB01 with the 

meaningless value of 1.04. This results are well depicted with an NSE and an R2 for the validation 

catchment of 10.95 and 0.42 respectively for the BFI regional. The last parameter Ksurf gave 

overall acceptable results even though the terms in the regression model are not easily explainable 

and can be discussed hydrologically implausible. The model performance was as good for training 

data as for validation data. Overall the Kbase model performed the best with R2 values for training 

(R2
T) and validation (R2

V) of 0.71 and 0.7 respectively NSE values for training (NSET) and for 

validation (NSEV) of 0.30 and 0.32 respectively. Nevertheless, the regional model for the surface 

recession constant could not be established using this method. The reason could be the high 

dependence of this parameter on the land use/cover not accurately captured in the study since the 

periods for calibration where different from one catchment to the other. In addition, the period of 

development of the land use map/cover used for this study does not fall within the period of 

calibration and verification of some catchments. The model structure could also be the reason. The 

interflow is combined with the surface runoff or baseflow in AWBM structure (W. Boughton, 

2004). With the interflow being the major flow process on forested, mountainous watersheds 

(Chanasyk & Verschuren, 1983), the main landscape of the study area but at different degrees from 

one catchment to another,  it is possible the parameter Ksurf has different meaning from one 

catchment to other based on the level of each of those processes (interflow and  surface runoff).  

Since some the regional model of Ksurf was not established and some estimated parameter values 

were not applicable, default values were assumed using the averaged parameter values. The results 

surprisingly were comparable with calibrated parameters in terms of performance measures. The 

average R2 for estimated and calibrated parameters for the catchments are very close, 0.64 and 0.65 

for calibration period and 0.62 and 0.6 for verification period respectively.   

 More investigations for the estimation of streamflow measurement uncertainties could allow the 

application of the scaling factors to CHIRPS rainfall estimates to improve the estimation of this 

parameter. The bias correction of the rainfall estimates over the area, if possible could also improve 

the method. 

The coordinates of the gauging stations were used as outlet to delineate the catchments areas. The 

resulting surface area and geographic location where used for rainfall extraction and derivation of 
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catchment attributes. Important deviation from the exact locations of the outlets was noticed as a 

reason for poor calibration results and establishments of functional relationship.  

There discrepancies resulted mainly from the slight misrepresentation of low flows and pick flows 

governed by Kbase and Ksurf respectively and BFI affecting both of them.  Those are the most 

sensitive parameters. The surface storage affects highly flows at the onset of rainfall season. When 

the soil moisture is close to the saturation in the middle of the season, the effect is much less 

important. This is the less sensitive of the AWBM parameters. 

 

5.2 Conclusion 

We generally learn most when a model or theory is shown to be in conflict with reliable data so 

that some modification of the understanding on which the model is based must be sought (Beven, 

2012). This is not the not the case for the data of this study.  Nevertheless, this method in the strict 

case of lack of rainfall data could be thus recommended for use in ungauged catchments. However,  

it should be seen as a positive attempt to deal with the double challenge of poor streamflow and 

lack of rainfall data in data-scarce context in developing countries in general, and particularly in 

complex landscape like the case of Kenya.  

 

5.3 Recommendations 

Upon the uncertainties encountered during this study, we recommend that: 

- Investigations about land use change should be considered as a specific objectives in other 

to understand and consider the effect on model parameter values. That would provide more 

realistic even though complex, approach to get insight on the relationships between 

catchment physical characteristics and its hydrological response signatures.  

- Satellite rainfall estimates are very important source of rainfall information but should 

subjected to thorough analysis and cross-checking with observed data for bias correction to 

improve the quality. 

- The geo-referencing of hydrological information even if it is not the hardest part in 

producing hydrological data is as crucial, since one of the challenges faced was the selection 

of the location of the outlets. 
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APPENDIX  

Appendix1: River gauging stations 

 

ID NAME LAT LONG 

1AB01 MALAKISI 0.843 34.524 

1BA01 MOIBEN 0.804 35.443 

1BE06 KOITOBOS 0.965 35.09 

1CB08 ENDOROTO 0.446 35.367 

1CB09 ELLEGIRINI 0.457 35.383 

1DB01 KUYWA 0.624 34.7 

1GB11 AINOPSIWA -0.025 35.176 

1GC05 MASAITA -0.194 35.535 

1GG01 NAMUTING -0.203 35.347 

1HA04 KIBOS -0.008 34.804 

1HD02 AWACH -0.45 34.883 

1JA02 KIPTIGET -0.551 35.257 

1LA03 NYANGORES -0.786 35.347 

1LB02 AMALA -0.897 35.438 

2ED01 TIGERI 0.103 35.691 

2FC05 NJORO -0.372 35.925 

2GB04 WANJOHI -0.279 36.483 

2GC05 NANDARASI -0.551 36.559 

3BA10 RUARAKA -1.227 36.823 

3BB12 KAMITI -1.197 36.971 

3BC13 KOMOTHAI -1.066 36.872 

3CB02 NDARUGU -0.996 36.917 

4AA01 SAGANA -0.367 37.067 

4AA02 THEGO -0.35 37.05 

4AC04 NEW CHANIA -0.421 36.958 

4BE01 MARAGUA -0.75 37.153 

4CA04 KIMAKIA -0.879 36.875 

4CB05 THIKA -0.808 36.817 

4DC03 RUPINGAZI -0.533 37.438 

4EB01 NITHI -0.288 37.646 

4F05 MARIARA NEW 0.042 37.658 

5AA05 EQUATOR 0.02 36.363 

5AC15 EWASO NAROK 0.257 36.537 

5BE05 TELESWANI 0.083 37.23 

5BE07 LIKI 0.021 37.087 

5BC02 NAROMORU 0.165 37.025 
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Appendix 2: Preliminary Selected Catchment
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Appendix 3: Simulated and observed  hydrographs of AWBM from RRL interface 
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